Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T02:15:27.408Z Has data issue: false hasContentIssue false

Photoinduced Charge Transfer at Hybrid Semiconductor Interfaces

Published online by Cambridge University Press:  01 February 2011

Juan Cabanillas-Gonzalez
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Hans Joachim Egelhaaf
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Guglielmo Lanzani
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Alberto Brambilla
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Lamberto Duò
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Marco Finazzi
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Franco Ciccacci
Affiliation:
[email protected], Politecnico di Milano, Physics, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
Get access

Abstract

We monitor in real time photoinduced charge injection at the interface between a fluorinated copper phthalocyanine layer (CuPcF16) deposited by thermal evaporation on top of a p - doped GaAs (100) wafer. Literature data on the electron affinity of CuPcF16 (5.2 eV respect to vacuum level) combined with photoemission measurements indicates an energy offset of 1.1 eV for the GaAs conduction band respect to the CuPcF16 LUMO level. This suggests that charge transfer at the organic - inorganic interface is feasible. We study bilayers of GaAs and CuPcF16 thin films (25 nm) by pump - probe spectroscopy with 200 fs time resolution. Pump photons at 780 nm excites the CuPcF16 layer whereas probe photons in the visible range, reflected by the GaAs surface, monitor induced changes at the interface. We observe a strong photoinduced absorption band centered around 560 nm which appears during the pulse duration, shows a build-up dynamics and persists beyond 0.2 ns. This band cannot be attributed to single material contribution, as demonstrated by test experiments with single layers. By applying steady state (CW) electromodulated spectroscopy we identify charge state absorption in CuPcF16 in the same spectral region as the photoinduced absorption band. We thus assign our transient dynamics to formation of CuPcF16 ions at the interface, following charge injection. On account of the rapid charge formation we identify this system as a potential candidate for the fabrication of hybrid photodiodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Brown, T. M., Friend, R. H., Millard, I. S., Lacey, D. J., Burroughes, J. H. and Cacialli, F., App. Phys. Lett. 79, 174 (2001).Google Scholar
2. Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissortel, F., Salbeck, J., Spreitzer, H., and Gratzel, M, Nature 395, 583 (1998).Google Scholar
3. Halls, J. J. M., Cornil, J., Santos, D. A. Dos, Silbey, R., Hwang, D. H., Holmes, A. B., Bredas, J. L., and Friend, R. H., Phys. Rev. B 60, 5721 (1999).Google Scholar
4. Schlichthorl, G., Park, N. G., and Frank, A. J., J. Phys. Chem. B 103, 782 (1999).Google Scholar
5. Horowitz, G., and Garnier, F., Solar Energy Materials 13, 47 (1986).Google Scholar
6. Zutic, I., Fabian, J., and Sarma, S. Das, Rev. Mod. Phys. 76, 323 (2004).Google Scholar
7. Peumans, P., Uchida, S., and Forrest, S. R., Nature 425, 158 (2003).Google Scholar
8. Hiller, S., Schletwein, D., Amstrong, N. R., and Wohrle, D., J. Mat. Chem. 8, 945 (1998).Google Scholar
9. Lanzani, G., Cerullo, G., Polli, D., Gambetta, A., Rossi, M. Zavelani –, and Gadermaier, C., Phys. Status Solidi 201, 1116 (2004).Google Scholar
10. Yamashita, A., Maruno, T., and Hayashi, T., J. Phys. Chem. 98, 12695 (1994).Google Scholar
11. Rodriguez, D. Gonzalez –, Torres, T., Guldi, D. M., Rivera, J., Herranz, M. A., and Echegoyen, L., J. Am. Chem. Soc. 126, 6301 (2004).Google Scholar
12. Hesse, K., and Schlettwein, D., J. Electroanal. Chem. 476, 148 (1999).Google Scholar