No CrossRef data available.
Article contents
Photogeneration and Carrier Transport in Amorphous Silicon/Crystalline Silicon Devices
Published online by Cambridge University Press: 15 February 2011
Abstract
Hydrogenated amorphous silicon (a-Si:H)/ crystalline silicon (c-Si) type heterodiodes in solar cell structures have been studied by rf glow discharge, dc magnetron sputtering, and a remote plasma deposition of a-Si:H onto p type c-Si. Carrier transport and photogeneration in such structures have been investigated by current-voltage-temperature, thermally stimulated capacitance (TSCAP), and spectral response experiments. Dark carrier conduction is found to be a combination of tunneling and interface recombination, but is dominated by either one depending on the deposition/sputtering conditions. The conditions investigated include energy of the plasma species, type of plasma cleaning, and substrate preparation techniques. For each of the conditions, the trap type, energy and concentration have been identified by TSCAP. Solar cells fabricated by the optimized fabrication scheme routinely yield 10.5% efficient devices having a short circuit current density (Jsc) of 30 mA/cm2, a open circuit voltage of 0.55 volts and a fill factor (FF) of 0.64, without an AR coating, over 0.3 cm2 area.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997