Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:16:04.167Z Has data issue: false hasContentIssue false

Photoemission Optogalvanic Spectroscopy: An in situ Plasma-Surface Diagnostic

Published online by Cambridge University Press:  22 February 2011

Stephen W. Downey
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Annette Mitchell
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Richard A. Gottscho
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

An obstacle to better design and control of plasma processes is our limited ability to monitor surface properties in situ. We describe a new plasma diagnostic technique, photoemission optogalvanic spectroscopy, which can be used to monitor surface contamination, etching rates, and end points. The experiment consists of irradiating a surface with a pulsed excimer or dye laser whose photon energy is above the substrate work function. Photoemission of electrons from the surface is detected by monitoring changes in the discharge current (optogalvanic effect). The technique is characterized by measuring signal strengths as a function of laser intensity, laser wavelength, and bias voltage in vacuum and in an Ar plasma. The technique is used to monitor contamination and etching end points in F-containing plasmas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Winters, H. F., Coburn, J. W. and Chuang, T. J., J. Vac. Sci. Technol., B1 (1983) 469. J. F. Morar, F. R. McFeely, N. D. Shinn, G. Landgren and F. J. Himpsel, Appl. Phys. Lett., 45 (1984) 174. F. R. McFeely, J. F. Morar, N. D. Shinn, G. Landgren and F. J. Himpsel, Phys. Rev. 30, 764 (1984).Google Scholar
[2] Downey, S. W., Mitchell, A., and Gottscho, R.A., J. Appl. Phys. (in press).Google Scholar
[3] Selwyn, G.S., Ai, B.D., and Singh, J., Appl. Phys. Lett. (in press).Google Scholar
[4] Gottscho, R. A., Burton, R. H., Flamm, D. L., Donnelly, V. M., and Davis, G. P., J. Appl. Phys., 55 (1984) 2707.Google Scholar
[5] Gottscho, R.A., Phys. Rev. A. 36, 2233 (1987).Google Scholar
[6] Fowler, R. H., Phys Rev., 38 (1931) 45.CrossRefGoogle Scholar
[7] Goodman, A. M., Phys. Rev., 144 (1966) 588.Google Scholar
[8] Berglund, C. N. and Powell, R. J., J. Appl. Phys., 42 (1971) 573.CrossRefGoogle Scholar
[9] Shen, Y.R., “The Principles of Nonlinear Optics,” John Wiley & Sons (New York 1984), chapter 25.Google Scholar
[10] Naaman, R., Petrank, A. and Lubman, D. M., J. Chem. Phys., 79 (1983) 4608. A. Petrank and R. Naaman, J. Phys. Chem., 88 (1984) 3924.Google Scholar
[11] DiStefano, T.H. and Viggiano, J.M., IBM J. Res. Develop. 94 (1974).Google Scholar