Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T12:20:19.013Z Has data issue: false hasContentIssue false

A Photoemission Investigation of the Interfacial Electronic Properties of Mo and Ni Schottky Barriers to CuInSe2(112)

Published online by Cambridge University Press:  25 February 2011

David W. Niles
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Art J. Nelson
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
C. Richard Schwerdtfeger
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Hartmut Höchst
Affiliation:
Synchrotron Radiation Center, 3731 Schneider Drive, Stoughton, WI 53589
Dennis Rioux
Affiliation:
Synchrotron Radiation Center, 3731 Schneider Drive, Stoughton, WI 53589
Get access

Abstract

We studied Mo and Ni contacts to p-type CuInSe2(112) with angular-resolved synchrotron radiation ultraviolet photoemission spectroscopy in the range 40 eV hv < 120 eV. By varying the photon energy, we determined that emission from the CuInSe2 Г-point in the Brillouin zone occurs for hv = 60 eV, and identified emission from the valence band maximum. After depositing Ni and Mo, we found that the conduction band minimum of the CuInSe2 very nearly aligned to the Fermi edges of both metals, giving Schottky barriers Vsb = 1.05 ±0.1 eV. The interfaces are not atomically abrupt, as seen by the outdiffusion of Se into the refractory metal overlayers and the formation of In-Mo and In-Ni alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rockett, A. and Birkmire, R. W., J. Appl. Phys. 70, 1 (1991).CrossRefGoogle Scholar
2. Nelson, A. J., Gebhard, S., Rockett, A., Colavita, E., Engelhardt, M., and Höchst, H., Phys. Rev. B 42, 7518 (1990).CrossRefGoogle Scholar
3. Nelson, A. J., Gebhardt, S., Kazmerski, L. L., Colavita, E., Engelhardt, M., and Höchst, H., J. Vac. Sci. Technol. A 9, 978 (1991).CrossRefGoogle Scholar
4. Details of the growth may be found in Schwerdtfeger, C. R. and Czisek, T. F., presentation Ib3.4 of this symposium.Google Scholar
5. Corvini, P., Kahn, A., and Wagner, S., J. Appl. Phys. 57, 2967 (1985).CrossRefGoogle Scholar
6. Niles, D. W. and Höchst, H., Phys. Rev. B 41, 12710 (1990).CrossRefGoogle Scholar
7. Mancini, D. C., Bissen, M., Rioux, D., Patel, R., Rogers, G., Brodski, E. L., Höchst, H., Rev. Sci. Instrum. 63, 1269 (1992).CrossRefGoogle Scholar
8. Jaffe, J. E. and Zunger, A., Phys. Rev. B 28, 5822 (1983).CrossRefGoogle Scholar
9. Niles, D. W., to be publishedGoogle Scholar
10. Harrison, W. A. and Tersoff, J., J. Vac. Sci. Technol. B 4, 1068 (1986).CrossRefGoogle Scholar