Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:02:44.829Z Has data issue: false hasContentIssue false

Photoelectron Spectroscopy Measurements of the Valence Band Structures of C60 Thin Films on Single Crystal Silicon and Polycrystalline Copper

Published online by Cambridge University Press:  11 February 2011

B. Ha
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
J. H. Rhee
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
Y. Li
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
D. Singh
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
S. C. Sharma*
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas 76019
Get access

Abstract

We have used photoelectron spectroscopy to study possible modifications in the electronic valence band structures of thin films of C60 due to their deposition on single crystal silicon and polycrystalline copper. The C60 thin films were deposited by thermal evaporation under high vacuum and further characterized by using Raman spectroscopy. We observe significant differences in the valence band structures of C60 thin films deposited on these substrates and attribute them to interactions at the interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., “Science of Fullerenes and Carbon Nanotubes”, Academic Press, 1996, therein.Google Scholar
2. Solid State Physics, 48, eds, Ehrenreich, H. and Spaepen, F., Academic Press, 1994.Google Scholar
3. Goldoni, A., Cepek, C., Larciprete, R., Pagliara, S., Sangaletti, L., and Paolucci, G., Surf. Scie. 482–485, (2001) 606.CrossRefGoogle Scholar
4. Li, X., Tang, Y. J., Zhao, H. W., Zhan, W. S., Wang, H., and Hou, J. G., Appl. Phys. Lett. 77, (2000), 984.CrossRefGoogle Scholar
5. Seta, M. D., Sanvitto, D., and Evangelisti, F., Phys. Rev. B 59, (1999), 9878.CrossRefGoogle Scholar
6. Manaila, R., Marian, A. B., Macovei, D., Brehm, G., Marian, D. T., and Baltog, I., J. Raman Spectro. 30, (1999), 1019.3.0.CO;2-W>CrossRefGoogle Scholar
7. Hunt, M. R., Rudolf, P., and Modesti, S., Phys. Rev. B 55, (1997), 7882.CrossRefGoogle Scholar
8. Tsuei, K. D., Yuh, J. Y., Tzeng, C. T., Chu, R. Y., Chung, S. C., and Tsang, K. L., Phys. Rev. B 56, (1997), 15412.CrossRefGoogle Scholar
9. Murray, P. W., Pedersen, M. O., Laegsgaard, E., Stensgaard, I., and Besenbacher, F., Phys. Rev. B 55, (1997), 9360.CrossRefGoogle Scholar
10. Hebard, A. F., Eom, C. B., Iwasa, Y., Lyons, K. B., Thomas, G. A., Rapkine, D. H., Fleming, R. M., and Haddon, R. C., Phys. Rev. B 50, (1994), 17740.CrossRefGoogle Scholar
11. Chase, S. J., Bacsa, W. S., Mitch, M. G., Pilione, L. J., and Lannin, J. S., Phys. Rev. B 46, (1992), 7873.CrossRefGoogle Scholar
12. Sharma, S. C., Ha, B., Rhee, J. H., Li, Y., Singh, D., and Govinthasamy, R., Mat. Res. Soc. Symp. Proc. 695, (2002) 97.Google Scholar
13. Sharma, S. C., Ha, B., Rhee, J. H., and Li, Y., in Frontiers of High Pressure Research II: Applications of High Pressure to Low-Dimensional Novel Electronic Materials, eds. Hochheimer, H. D., Kuchta, B., Dorhout, P. K., and Yarger, J. L., NATO Science Series (2001) 493.CrossRefGoogle Scholar
14. Ha, B., Rhee, J. H., Li, Y., Singh, D., and Sharma, S. C., Surf. Scie. 520, (2002), 186.CrossRefGoogle Scholar