Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:39:12.124Z Has data issue: false hasContentIssue false

Photodeposition of Metal Sulfide Quantum Dots on Titanium(IV) Dioxide and its Applications

Published online by Cambridge University Press:  23 May 2011

Hiroaki Tada*
Affiliation:
Department of Applied Chemistry, School of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
Get access

Abstract

In situ photodeposition techniques taking advantage of the TiO2 photocatalysis have been developed for coupling metal sulfide quantum dots (QDs) and TiO2 at a nonoscale. The coupled metal sulfide-TiO2 systems possess the following characteristics: (I) a large amount of metal sulfides can be directly formed on TiO2 during a fairly short period with excellent reproducibility, (II) the band energies of metal sulfides QDs are widely tunable by irradiation time, (III) metal sulfide QDs can be deposited on not only the external surfaces but also the inner ones of mesoporous TiO2 nanocrystalline films without pore-blocking, (IV) the simple solution-based technique at low temperature enables the low-cost production, (V) this technique has a wide possibility for coupling TiO2 and narrow gap metal sulfides. These unique features produce the excellent performances of the resulting heteronanojunaction systems as the photoanodes for QD-sensitized solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, H., Chen, G., and Bahnemann, D. W., J. Mater. Chem. 19, 5089 (2009).Google Scholar
2. Liu, G., Wang, L., Yang, H. G., Cheng, H.-M., and Lu, G. Q., J. Mater. Chem. 20, 831(2010).Google Scholar
3. Rühle, S., Shalom, M., and Zaban, A., ChemPhysChem, 11, 2290 (2010).Google Scholar
4. Kamat, P.V., Tvrdy, K., Baker, D. R., and Radlich, J. G., Chem. Rev. 110, 6664 (2010).Google Scholar
5. Robel, I., Subramanian, V., Kuno, M., and Kamat, P. V., J. Am. Chem. Soc. 128, 2385 (2006).Google Scholar
6. Shen, Y.J., Lee, Y. L., and Yang, Y. M., J. Phys. Chem. B 110, 9556 (2006).Google Scholar
7. O’Regan, B., and Grätzel, M., Nature, 353, 737 (1991).Google Scholar
8. Mukaihata, N., Matsui, H., Kawahara, T., Fukui, H., and Tada, H., J. Phys. Chem. C 112, 8702 (2008).Google Scholar
9. Dibbell, R. S., and Watson, D. F., J. Phys. Chem. C 113, 3139 (2009).Google Scholar
10. Vogel, R., Pohl, K., and Weller, H., Chem. Phys. Lett. 174, 241 (1990).Google Scholar
11. Kraeutler, B., and Bard, A. J., J. Am. Chem. Soc. 100, 4317 (1978).Google Scholar
12. Tada, H., Saito, Y., and Kawahara, H., J. Electrochem. Soc. 138, 140 (1991).Google Scholar
13. Tada, H., Tsuji, S., and Ito, S., J. Colloid Interface Sci. 239, 196 (2001).Google Scholar
14. Song, Y.-Y., Zhang, K., and Xia, X.-H., Appl. Phys. Lett. 88, 053112 (2006).Google Scholar
15. Tada, H., Hyodo, M., and Kawahara, H., J. Phys. Chem. 95, 10185 (1991).Google Scholar
16. Kim, Y., Lim, J.-w., Sung, Y.-E., Xia, J.-b., Masaki, N., and Yanagida, S., J. Photochem. Phtoobiol. A: Chem. 204, 110 (2009).Google Scholar
17. Tang, H.-, Li, J., Bie, Y., Zhu, L., Zou, J., J. Hazard. Mater. 175, 977 (2010).Google Scholar
18. Matsumoto, Y., Noguchi, M., and Matsunaga, T., J. Phys. Chem. B 103, 7190 (1999).Google Scholar
19. Chiang, K., Amal, R., Tran, T., Adv. Environ. Res. 6, 471 (2002).Google Scholar
20. Vigil, E., González, B., Zumeta, I., Domingo, C., Doménech, X., and Ayllón, J. A., Thin Solid Films 489, 50 (2005).Google Scholar
21. Jin, M., Zhang, X., Nishimoto, S., Liu, Z., Tryk, D. A., Emeline, A. V., Murakami, T., and Fujishima, A., J. Phys. Chem. C 111, 658 (2007).Google Scholar
22. Nishimura, N., Tanikawa, J., Fujii, M., Kawahara, T., Ino, J., Akita, T., Fujino, T., and Tada, H., Chem. Commun. 3564 (2008).Google Scholar
23. Lin, W.-Y., Wei, C., and Rajeshwar, K., J. Electrochem. Soc. 140, 2477 (1993).Google Scholar
24. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T., and Tanaka, K., Nat. Mater. 5, 702 (2006).Google Scholar
25. Tak, Y., and Yong, K., J. Phys. Chem. C 112, 74 (2008).Google Scholar
26. Chenthamarakshan, C. R., Ming, Y., and Rajeshwar, K., Chem. Mater. 12, 3538 (2000).Google Scholar
27. Somasundaram, S., Chenthamarakshan, C. R., de Tacconi, N. R., Ming, Y., Rajeshwar, K., Chem. Mater. 16, 3846 (2004).Google Scholar
28. Nguyen, V. N. H., Amal, R., and Beydoun, D., J. Photochem. Photobiol. A: Chem. 179, 57 (2006).Google Scholar
29. Fujii, M., Nagasuna, K., Fujishima, M., Akita, T., and Tada, H., J. Phys. Chem. C 113, 16711 (2009).Google Scholar
30. Zhukovskiy, M. A., Stroyuk, A. L., Shavalagin, V. V., Smirnova, N. S., Lytvyn, O. S., and Eremenko, A. M., J. Photochem. Photobiol. A: Chem. 203, 137 (2009).Google Scholar
31. Jin-nouchi, Y., Akita, T., and Tada, H., ChemPhysChem 11, 2349 (2010).Google Scholar
32. Ma, B., Wang, L., Dong, H., Gao, R., Geng, Y., Zhu, Y., and Qiu, Y., Phys. Chem. Chem. Phys. 13, 2656 (2011).Google Scholar
33. Yang, S., Huang, C., Zhai, J., Wang, Z., and Jiang, L., J. Mater. Chem. 12, 1459 (2002).Google Scholar
34. Tauc, J., Grigorovich, R., and Vancu, A., Phys. Stat. Sol. 15, 627 (1966).Google Scholar
35. Brus, L., J. Phys. Chem. 90, 2555 (1986).Google Scholar
36. Jin-nouchi, Y., Naya, S.-i., and Tada, H., J. Phys. Chem. C 114, 16837 (2010).Google Scholar
37. Tachibana, Y., Umekita, K., Otsuka, Y., and Kuwabata, S., J. Phys. Chem. C 113, 6852 (2009).Google Scholar
38. Kongkanand, A., Tvrdy, K., Takeuchi, K., Kuno, M., and Kamat, P. V., J. Am. Chem. Soc. 130, 4007 (2008).Google Scholar
39. Gónzalez-Pedro, V., Xu, X., Mora-Seró, I., and Bisquert, J., ACS Nano DOI: 10.1021/nn101534y (2010).Google Scholar
40. Fan, S.-Q., Fang, B., Kim, J. H., Kim, J.-J., Yu, J.-S., and Ko, J., Appl. Phys. Lett. 96, 063501 (2010).Google Scholar
41. Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H.-J., Seok, S. I., Nazeeruddin, M. K., and Grätzel, M., Nano Lett. 10, 2609 (2010).Google Scholar
42. Moon, S.-J., Itzhaik, Y., Yum, J.-H., Zakeeruddin, S. M., Hodes, G., and Grätzel, M., J. Phys. Chem. Lett. 1, 1524 (2010).Google Scholar
43. Mora-Sero, I., and Bisquert, J., J. Phys. Chem. Lett. 1, 3046 (2010).Google Scholar