Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:52:19.088Z Has data issue: false hasContentIssue false

Photochenistry And Photophysics Of Materials In Zeolites.

Published online by Cambridge University Press:  15 February 2011

Kai-Kong Iu
Affiliation:
Department of Biochemistry and Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
Xinsfleng Liu
Affiliation:
Department of Biochemistry and Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
J. Kerry Thomas
Affiliation:
Department of Biochemistry and Chemistry, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
Get access

Abstract

Pyrene is used as a molecular probe to study surface polarity, constrained character of diffusion, oxygen diffusion, effects of coadsorbed water, and exchange cations in zeolites A, X and Y. The experimental methods include both steady-state and time-resolved fluorescence spectroscopy, and diffuse reflectance absorption spectroscopy. The properties of CdS and TiO2 constructed in zeolites are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Breck, D.W., Zeolite Molecular Sieves, (Wiley, New York, 1974).Google Scholar
(2) Molecular Sieves 11, edited by Katzer, J.R. (A.C.S. symposium series 40, 1977).CrossRefGoogle Scholar
(3) Zeolite Chemistry and Catalysis, edited by Rabo, J.A. (ACS Monographs 171, 1976).Google Scholar
(4) FRS, Barrer, R.M., Hlydrothermal Chemistry of Zeolires, (Academic Press, New York, 1982).Google Scholar
(5) Perspectives In Molecular Sieve Science, edited by Flank, W.H. and Whyte, T.E Jr. (A.C.S. symposium series 368, 1988).CrossRefGoogle Scholar
(6) (a) Turro, N.J., Pure AppI. Chem. 59, 12191228(1986). (b) L. Kevan, Rev. Chem. Intermed. 8, 53–58(1987). And references cited there in.Google Scholar
(7) (a) Liu, X., Iu, K.-K. and Thomas, J.K., J. Phys. Chem. 93, 41204128(1989). (b) K.-K. Iu and J.K. Thomas, Langmuir 6, 471–478(1990).Google Scholar
(8) (a) Iu, K.-K. and Thomas, J.K., J. Phys. Chem. 95, 506509(1991). (b) K.-K. Iu and J.K. Thomas, presented at ACS national meeting in Washington DC, August, 1990(unpublished).Google Scholar
(9) Kalyanasundaram, K. and Thomas, J.K., J. Am. Chem. Soc. 99, 20392044(1977).Google Scholar
(10) Mayo, P. De, Natarajan, L.V. and Ware, W.R., in Ormranic Photo-trans formations in Nonhomopeneous Media, edited by Fox, M.A., (ACS Symposium Series, American Chemical Society: Washington. DC, No 278, 1985).Google Scholar
(11) Bitting, W., Milosavljevic, B.H. and Thomas, J.K., Int. J. Radiat. Chem. Phys. 32, 81184(1988).Google Scholar
(12) MilosavlJevic, B.H. and Thomas, J.K., J. Phys. Chem. 89, 18301835(1985).CrossRefGoogle Scholar
(13) Tachiya, M. and Mozumder, A., Chem. Phys. Lett. 28, 8789(1974).Google Scholar
(14) (a) Brocklehurst, B., Chem. Phys. 2, 618(1973). (b) R.A. Marcus, and N. Sutin, Biochim. Biophys. Acta, 811, 265–322(1985).Google Scholar
(15) (a) Förster, Th. Discussion Faraday Soc., 21, 7(1959). (b) N. Mataga, H. Obashi and T. Okada, Chem. Phys. Lett. 1, 133–134(1967).Google Scholar
(16) (a) Bennett, R.G., J. Phys. Chem. 41, 30373040(1964). (b) J.B. Birks, J. Phys. B, 1. 946–957(1968).CrossRefGoogle Scholar
(17) Johnson, P.C. and Offen, H.W., J. Phys. Chem. 57 14231475(1972).Google Scholar
(18) (a) Ramammurthy, V., Caspar, J.V., Corbin, D.R. and Eaton, D.F., J. Photochem. Photobio. A 50 157161(1989). (b) J.V. Caspar, V. Ramamurthy and D.R. Corhin, Coord. Chem. Rev. 97 225–236(1990).CrossRefGoogle Scholar
(19) Lu, K.-K. and Thomas, J.K., unptmblished results.Google Scholar
(20) (a) Pankasem, S., lu, K.-K. and Thomas, J.K., submitted to J. Photochem. Photobio. A. (b) X. Llu, K.-K. Iu and J.K. Thomas, unpublished results.Google Scholar
(21) (a) Anpo, M., Aikawa, N., Kubokawa, Y., Che, M., Jonis, C. and Giamello, E., J. Phys. Chem. 89, 5017(1985). (b) M. Takeuchi and S.J. Kanda, J. Spectrosc. Soc. Jpn. 19, 141(1970). (c) M. Tsukada, C. Satoko and H. Adachi, J. Phys. Soc. Jpn. 47, 1610(1979).Google Scholar
(22) (a) Thomas, J.K., J. Phys. Chem. 91, 267(1987). (b) J. Kuczynski and J.K. Thomas, Langmuir 1, 158(1985). (c) J. Kuczynski and J.K. Thomas, J. Phys. Chem. §7, 5498(1983), J. Kuczynski and J.K. Thomas, J. Phys. Chem., 89, 2720(1985). (d) J. Kuczynski, B.H. Milosavljevic and J.K. Thomas, J. Phys. Chem. 88, 980(1984). (e) P. Lianos and J.K. Thomas, Chem. Phys. Lett. 125, 299(1986).Google Scholar
(23) (a) Brus, L.E., J. Chem. Phys. 11, 123(1987). (b) R. Rosetti, S. Nakahara and L.E. Brus, J. Chem. Phys. 79, 484(1985). (c) L.E. Brus, J. Chem. Phys. 80, 4403(1984). (d) R. Rosetti, J.L. Ellison, J.M. Gibson and L.E. Brus, J. Chem. Phys. 80, 4464(1984).Google Scholar
(24) (a) Fojtik, A., Weller, H., Koch, V. and Henglein, A., Ber. Bunsen-Ces. Phys. Chem. 88, 969(1984). (b) H. Weller, A. Fojtik and A. Henglein, Chem. Phys. Lett. 117, 484(1985). (c) S. Baral, A. Fojtik, H. Weller and A. Henglein, J. Am. Chem. Soc. 108, 375(1986). (d) L. Spanhel, M. Haase, H. Weller and A. Henglein, J. Ain. Chem. Soc. 109, 5649(1987).Google Scholar
(25) (a) Ramsden, J.J., Webber, S.E. and Grätzel, M., J. Phys. Chem. 89, 1740(1985). (b) J.J. Ramsden and M.Grätzel, J. Chem. Soc., Faraday Trans. Soc. 1 80, 919(1984). (c) H.D. Duong, J.J. Ramsden and M. Cratzel, J. Am. Chem. Soc. 104, 2977(1982).Google Scholar
(26) (a) Nozik, A.J., Williams, F., Nenadovic, M.T., Rajh, T. and Micic, O.I., J. Phys. Chem. 89, 397(1985). (b) J.H. Nedeljkovic, M.T. Memadovoc, O.I. Micic and A.J.Nozik J. Phys. Chem. 90, 12(1986).Google Scholar
(27) Parise, J.B., MacDougau, J.E., Herron, N., Farlee, R., Sleight, A.W., Wang, Y., Moller, K. and Moroney, L.M., Inorg. Chem 27, 221(1988).Google Scholar
(28) Tamura, K., Hosokawa, S., Emndo, H., Yamasaki, S. and Oyanagi, II., J. Phys. Soc. Jpn. 55, 528(1986).Google Scholar
(29) Stramel, R. and Thomas, J.K., J. Colloid Interface Sci 110, 121(1986).Google Scholar
(30) (a) Wang, Y. and Herron, N., J. Phys. Chem. 91, 257(1987). (b) Y. Wang and N. Herron, J. Phys. Chem. 92., 4988(1988).Google Scholar
(31) Kraeutler, B.K. and Bard, A.J., J. Am. Chem. Soc. 100, 4317(1978).Google Scholar
(32) Anpo, H., Aikawa, N., Kubokawa, Y., Che, M., Jonis, C. and Giamello, E., J. Phys. Chem. 89, 5017(1985).Google Scholar
(33) Stramel, R., Nakamura, T. and 3.Thomas, K., J. Chem. Soc., Faraday Trans. Soc. 1 84 1287(1988).Google Scholar
(34) Liu, X. and Thomas, J.K., Langmuir 5, 58(1989).Google Scholar
(35) Parise, J.B., Macdougall, J., Herron, N., Farlee, R., Sleight, A.W., Wang, Y., Bein, T., Moller, K., and L.M. Moroney Inorg. Chem. 27 221(1988).Google Scholar
(36) Wang, Y. and Herron, N., J. Phys. Chem. 91, 257260(1987).Google Scholar
(37) Herron, N., Wang, Y., Eddy, H.M., Stacky, C.D., Cox, D.E., Moller, K. and Bein, T., J. Am. Chem. Soc. 111, 530(1989).Google Scholar
(38) Moller, K., Eddy, M.M., Stacky, G.D., Herron, N. and Bein, T., J. Am. Chem. Soc. III, 25642571(1989).Google Scholar
(39) Liu, X. and Thomas, J.K., Chem. Phys. Lect. 144, 286(1988).Google Scholar