Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T09:23:11.968Z Has data issue: false hasContentIssue false

Photo-Assisted Anodic Etching of Gallium Nitride Grown by MOCVD

Published online by Cambridge University Press:  10 February 2011

Hongqiang Lu
Affiliation:
Department of Electrical, Computer and System Engineering, Rensselaer Polytechnic Institute, Troy, NewYork 12180
Ziming Wu
Affiliation:
Department of Electrical, Computer and System Engineering, Rensselaer Polytechnic Institute, Troy, NewYork 12180
Ishwara Bhat
Affiliation:
Department of Electrical, Computer and System Engineering, Rensselaer Polytechnic Institute, Troy, NewYork 12180
Get access

Abstract

In this paper, the first study of photo-assisted anodic etching of unintentionally doped n-GaN at room temperature is reported. The electrolyte used is a mixture of buffered aqueous solution of tartaric acid and ethylene glycol. The etching rate varies from ∼20 Å/min to as high as 1600 Å/min. A systematic study shows that i) the etch rate, as well as the surface roughness, increases with the current density; ii) the etching rate is the highest when the pH of the electrolyte is around 7; iii) the etching is faster when there is more ethylene glycol in the electrolyte solution.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearton, S.J. and Abernathy, C. R., Appl. Phys. Lett. 64, 2294 (1994)Google Scholar
2 McLane, G. F., Casas, L., Pearton, S. J., and Abernathy, C. R., Appl. Phys. Lett. 66, 3328 (1995)Google Scholar
3. Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olson, D. T., and Kuznia, J. N., Appl. Phys. Lett 63, 2777 (1993)Google Scholar
4. Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H., and Morkoc, H., Appl. Phys. Lett 64, 887 (1994)Google Scholar
5. Ping, A. T., Adesida, I., and asif. Khan, M., Appl. Phys. Lett 67, 1250 (1995)Google Scholar
6. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996)Google Scholar
7. Pankove, J. Electrochem. Soc. 119, 1118 (1972)Google Scholar
8. Shintani, A., and Minagawa, S., J. Electrochem. Soc. 123, 706 (1976)Google Scholar
9. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. W., and Katz, A., J. Vac. Sci. Technol. A 11, 1772 (1993)Google Scholar
10. Minsky, M. S., White, M., and Hu, E. L., Appl. Phys. Lett. 68, 1531 (1996)Google Scholar
11. Muller, H., Eisen, F. H., and Mayer, J. W., J. Electrochem Soc. 122, 651 (1975)Google Scholar
12. Barber, H. D., Lo, H. B., and Jones, J. E., J. Electrochem. Soc. 123, 1404 (1976)Google Scholar
13. Hasegawa, H. and Hartnagel, H. L., J. Electrochem. Soc. 123, 713 (1976)Google Scholar
14. Finne, R. M., and Klein, D. L., J. Electrochem. Soc. 114, 965 (1967)Google Scholar