Published online by Cambridge University Press: 10 February 2011
An organic film of a few nm in thickness was applied as a resist for photolithography and scanning probe lithography. This resist film was prepared on an oxide-covered Si substrate through chemisorption and spontaneous organization of organosilane molecules, e.g., n-octadecyltrimethoxysilane. The film belongs to a class of materials referred to as self-assembled monolayer (SAM). A SAM/Si sample was irradiated through a photomask with vacuum ultraviolet (VUV) light at a wavelength of 172 nm. The photomask image was transferred to the SAM through the decomposition of the SAM. Furthermore, we demonstrate nano-scale patterning of the SAM using an atomic force microscope (AFM) with an electrically conductive probe. The SAM was electrochemically degraded in the region where the AFM probe had been scanned. Both the photo-printed and AFM-genereated patterns were successfully transferred into the Si substrates based on wet chemical etching or on dry plasma etching. At present, using these VUV and AFM-based lithographies, we have succeeded in fabricating minute features of 2 μm and 20 nm in width, respectively.