Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:35:34.674Z Has data issue: false hasContentIssue false

Phosphorous Doping of Microcrystalline CVD Diamond Using Modified Conditions

Published online by Cambridge University Press:  01 February 2011

Ken Haenen
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Wetenschapspark 1, Diepenbeek, B-3590, Belgium, +32-(0)11-268875, +32-(0)11-268899
Andrada Lazea
Affiliation:
[email protected], IMEC vzw, Division IMOMEC, Diepenbeek, Belgium
Vincent Mortet
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Jan D'Haen
Affiliation:
[email protected], Hasselt University, Institute for Materials Research (IMO), Diepenbeek, Belgium
Peter Geithner
Affiliation:
[email protected], Friedrich-Alexander Universität Erlangen-Nürnberg, Technische Physik, Erlangen, Germany
Jürgen Ristein
Affiliation:
[email protected], Friedrich-Alexander Universität Erlangen-Nürnberg, Technische Physik, Erlangen, Germany
Get access

Abstract

Phosphorous-doping of predominantly (110) oriented polycrystalline CVD diamond films is presented. Incorporation of phosphorous into the diamond grains was accomplished by using novel microwave plasma enhanced chemical vapor deposition (MW PE CVD) growth conditions. The substitutional nature of the phosphorous atom was confirmed by applying the quasi-steady-state photocurrent technique (PC) and cathodoluminescence (CL) measurements at low temperature. Topographical information and the relation between substrate and P-doped film grain orientation was obtained with scanning electron microscopy (SEM) and electron back-scattered diffraction (EBSD). The optimized growth parameters for P-doped layers on (110) oriented polycrystalline diamond differ substantially from the standard conditions reported in literature for P-doping of single crystalline (111) and (100) oriented diamond surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Koizumi, S., Kamo, M., Sato, Y., Ozaki, H. and Inuzuka, T., Appl. Phys. Lett. 71, 1065 (1997).Google Scholar
2. Koizumi, S., Watanabe, K., Hasegawa, M., Kanda, H., Science 292, 1899 (2001).Google Scholar
3. BenMoussa, A., Schühle, U., Haenen, K., Nesládek, M., Koizumi, S. and Hochedez, J. F., Phys. Stat. Sol. (a) 201, 2536 (2004).Google Scholar
4. Kato, H., Yamasaki, S. and Okushi, H., Phys. Stat. Sol. (a) 202 (11), 2122 (2005).Google Scholar
5. Kociniewski, T., Barjon, J., Pinault, M.A., Jomard, F., Lusson, A., Ballutaud, D., Gorochov, O., M. Laroche, J., Rzepka, E., Chevallier, J., Saguy, C., Phys. Stat. Sol. (a) 203 (12), 3136 (2006).Google Scholar
6. Katagiri, M., Isoya, J., Koizumi, S. and Kanda, H., Appl. Phys. Lett 85, 6365 (2004).Google Scholar
7. Kato, H., Yamasaki, S. and Okushi, H., Appl. Phys. Lett. 86 (22), Art. No. 222111 (2005).Google Scholar
8. Makino, T., Tokuda, N., Kato, H., Ogura, M., Watanabe, H., Ri, S.G., Yamasaki, S., Okushi, H., Jpn. J. Appl. Phys. 45 (37-41), L1042 (2006).Google Scholar
9. Kato, H., Yamasaki, S. and Okushi, H., Diamond Relat. Mater. 14 (11-12), 2007 (2006).10.1016/j.diamond.2005.08.021Google Scholar
10. Neslàdek, M., Haenen, K., D'Haen, J., Koizumi, S. and Kanda, H., Phys. Stat. Sol. (a) 199, 77 (2003).10.1002/pssa.200303824Google Scholar
11. Haenen, K., Meykens, K., Neslàdek, M., Knuyt, G., Stals, L. M., Teraji, T., Koizumi, S. and Gheeraert, E., Diamond Relat. Mater. 10, 439 (2001).10.1016/S0925-9635(00)00511-2Google Scholar
12. Neslàdek, M., Meykens, K., Haenen, K., Stals, L. M., Teraji, T. and Koizumi, S., Phys. Rev. B 59, 14852 (1999).Google Scholar
13. Haenen, K., Neslàdek, M., Schepper, L. De, Kravets, R., Vaněček, M. and Koizumi, S., Diamond Relat. Mater. 13, 2041 (2004).Google Scholar
14. Neslàdek, M., Meykens, K., Stals, L.M., Quaeyhaegens, C., D'Olieslaeger, M., Wu, T.D., Vaněček, M. and Rosa, J., Diamond Relat. Mater. 5, 1006 (1996); R. Zeisel, C.E. Nebel, M. Stutzmann, H. Sternschulte, M. Schreck and B. Stritzker, Phys. Stat. Sol. (a) 181 (1), 45 (2000); J.A. Garrido, C.E. Nebel, M. Stutzmann, E. Gheeraert, N. Casanova and E. Bustarret, Phys. Rev. B 65, 165409 (2002); H. Sternschulte, M. Schreck, B. Stritzker, A. Bergmaier and G. Dollinger, Diamond Relat. Mater. 12, 318 (2003); A. Hoffman, I. Andrienko, D.N. Jamieson and S. Prawer, Appl. Phys. Lett. 86 (4), Art. No. 044103 (2005).Google Scholar
15. Knuyt, G., Haenen, K., Neslàdek, M., Stesmans, A. and Adriaenssens, G., Diamond Relat. Mater. 15, 29 (2006).Google Scholar
16. Sauer, R., Teofilov, N., Thonke, K. and Koizumi, S., Phys. Stat. Sol. (a) 201 (11), 2405 (2004).Google Scholar
17. Barjon, J., Desfonds, P., M.Pinault, A., Kociniewski, T., Jomard, F. and Chevallier, J., J. Appl. Phys. 101, 113701 (2007).10.1063/1.2735408Google Scholar