Published online by Cambridge University Press: 01 February 2011
The lattice dynamics of single-walled carbon nanotubes (SWCNT) is studied from first-principles using density-functional perturbation theory (DFPT) at the GGA-PBE level. The phonon dispersions of a pristine, infinite zigzag (8,0) SWCNT are obtained and the effect of applying the rotational acoustic sum rule on vibrational properties is discussed. Finally we study the effects of covalent functionalizations on the SWCNT phonon frequencies by selectively increasing the effective mass of the carbon atoms that would link to the functional groups.