Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:26:24.519Z Has data issue: false hasContentIssue false

Phonon Deformation Potential Constants of Wurtzite ZnO: A First-Principles Study

Published online by Cambridge University Press:  20 February 2014

Kazuhiro Shimada
Affiliation:
Division of Electrical and Electronic Engineering, College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan.
Tomoyasu Hiramatsu
Affiliation:
Division of Electrical and Electronic Engineering, College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan.
Hitoshi Kato
Affiliation:
Division of Electrical and Electronic Engineering, College of Science and Engineering, Kanto Gakuin University, Yokohama 236-8501, Japan.
Get access

Abstract

We performed first-principles calculations to obtain the phonon deformation potential (PDP) constants of wurtzite ZnO. The results are in good agreement with available experimental data except for a few PDP constants. We also found that the phonon frequencies of the A1 and B2 modes have relatively stronger nonlinear characteristics than the other modes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jang, S.-H. and Chichibu, S. F., J. Appl. Phys. 112, 073503 (2012).CrossRefGoogle Scholar
Kobiakov, I. B., Solid State Commun. 35, 305 (1980).CrossRefGoogle Scholar
Carltti, G., Socino, G., Petri, A., and Verona, E., Appl. Phys. Lett. 51, 1889 (1987).CrossRefGoogle Scholar
Catti, M., Noel, Y., and Dovesi, R., J. Phys. Chem. Solids 64, 2183 (2003).CrossRefGoogle Scholar
Gopal, P. and Spaldin, N. A., J. Electron. Mater. 35, 538 (2006).CrossRefGoogle Scholar
Massidda, S., Resta, R., Posternak, M., and Baldereschi, A., Phys. Rev. B 52, R16977 (1995).CrossRefGoogle Scholar
Bernardini, F., Fiorentini, V., and Vanderbilt, D., Phys. Rev. B 56, R10024 (1997).CrossRefGoogle Scholar
Noel, Y., Zicovich-Wilson, C. M., Civalleri, B., D’Acro, Ph., and Dovesi, R., Phys. Rev. B 65, 014111 (2001).CrossRefGoogle Scholar
Reparaz, J. S., Muniz, L. R., Wagner, M. R., Goni, A. R., Alonso, M. I., Hoffmann, A., and Meyer, B. K., Appl. Phys. Lett. 96, 231906 (2010).CrossRefGoogle Scholar
Callsen, G., Reparaz, J. S., Wagner, M. R., Kirste, R., Nenstiel, C., Hoffmann, A., and Phillips, M. R., Appl. Phys. Lett. 98, 061906 (2011).CrossRefGoogle Scholar
Hohenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
Blochl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Perdew, J. P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., and Wentzcovitch, R. M., J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
Azuhata, T., Takesada, M., Yagi, T., Shikanai, A., Chichibu, S. F., Torii, K., Nakamura, A., Sota, T., Cantwell, G., Eason, D. B., and Litton, C. W., J. Appl. Phys. 94, 968 (2003).CrossRefGoogle Scholar
Serrano, J., Manjon, F. J., Romero, A. H., Ivanov, A., Cardona, M., Lauck, R., Bosak, A., and Krisch, M., Phys. Rev. B 81, 174304 (2010).CrossRefGoogle Scholar