Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:29:35.987Z Has data issue: false hasContentIssue false

Phase-Field Simulation of Domain Structure Evolution in Ferroelectric Thin Films

Published online by Cambridge University Press:  21 March 2011

Y. L. Li
Affiliation:
Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity Park, PA 16802, USA
S. Y. Hu
Affiliation:
Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity Park, PA 16802, USA
Z. K. Liu
Affiliation:
Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity Park, PA 16802, USA
L. Q. Chen
Affiliation:
Department of Materials Science and EngineeringThe Pennsylvania State UniversityUniversity Park, PA 16802, USA
Get access

Abstract

A phase-field model for predicting the domain structure evolution in constrained ferroelectric thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. In particular, the model is applied to the domain structure evolution during a cubic→tetragonal proper ferro- electric phase transition. The effect of substrate constraint on the volume fractions of domain variants, domain-wall orientations, and domain shapes is studied. It is shown that the predicted results agree very well with existing experimental observations in ferroelectric thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford, 1977.Google Scholar
[2] Cross, L.E., “Ferroelectric Ceramics: Tailoring Properties for Specific Applications”, pp.185 in Ferroelectric Ceramics, Birkhauser Verlag, Basel, Switzerland, 1993.Google Scholar
[3] Arlt, G., Ferroelectrics 104, 217 (1990).Google Scholar
[4] Speck, J. S. and Pompe, W., J. of Appl. Phys. 76, 466 (1994).Google Scholar
[5] Roytburd, A. L., J. of Appl. Phys. 83, 228 (1998)Google Scholar
[6] Roytburd, A. L., J. of Appl. Phys. 83, 239 (1998)Google Scholar
[7] Pertsev, N. A. and Koukhar, V. G., Phys. Rev. Lett. 84, 3722(2000).Google Scholar
[8] Nambu, S. and Sagala, D. A., Phys. Rev. B 50, 5838(1994)Google Scholar
[9] Hu, H. L. and Chen, L. Q., J. Am. Ceram. Soc. 81, 492 (1998).Google Scholar
[10] Semenovskaya, S. and Khachaturyan, A. G., J. Appl. Phys. 83, 5125 (1998).Google Scholar
[11] Binder, K., Ferroelectrics 35, 99 (1981).Google Scholar
[12] Tilley, D. R. and Zeks, B., Solid State Commu. 49, 823 (1984).Google Scholar
[13] Devonshire, A. F., Phil. Mag. Suppl. 3, 85 (1954).Google Scholar
[14] Cao, W. and Cross, L.E., Phys.Rev.B 44 5(1991).Google Scholar
[15] Khachaturyan, A.G., Theory of Structural Transformations in Solids, Wiley, New York, 1983.Google Scholar
[16] Mura, T., Micromechanics in Solids, Kluwer Academic Publishers, 1982.Google Scholar
[17] Chen, L. Q. and Shen, J., Comp. Phys. Comm. 108, 147(1998).Google Scholar
[18] Haun, M. J., Furman, E., Jang, S. J., Mckinstry, H. A. and Cross, L. E., J. Appl. Phys. 62, 3331(1987).Google Scholar
[19] Pertsev, N. A., Zembilgotov, A. G., and Tabantev, A. K., Phys. Rev. Lett. 80, 1988(1998).Google Scholar
[20] Chen, L. Q. and Khachaturyan, A. G., Phil. Mag. Lett. 65, 15(1992).Google Scholar
[21] Seifert, A., Lange, F. F., and Speck, J. S., J. Mater. Res. 10, 680(1995).Google Scholar
[22] Alpay, S. P., Nagarajan, V., Bendersky, L. A., Vaudin, M. D., Aggarwal, S., Ramesh, R. and Roytburd, A. L., J. of Appl. Phys. 85, 3271(1999).Google Scholar