Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T17:12:21.655Z Has data issue: false hasContentIssue false

Phase Transitions of Organic Fluids Confined in Porous Silicon

Published online by Cambridge University Press:  10 February 2011

C. Faivre
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, Grenoble-I, CNRS, (UMR 5588); BP 87; 38402 Saint Martin d'Hères Cedex; France, [email protected]
G. Dolino
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, Grenoble-I, CNRS, (UMR 5588); BP 87; 38402 Saint Martin d'Hères Cedex; France, [email protected]
D. Bellet
Affiliation:
Laboratoire de Spectrométrie Physique, Université J. Fourier, Grenoble-I, CNRS, (UMR 5588); BP 87; 38402 Saint Martin d'Hères Cedex; France, [email protected]
Get access

Abstract

This paper reports experimental data on both the solid-liquid and liquid-vapour phase transitions of an organic fluid confined in the pore network of porous silicon, by using respectively differential scanning calorimetry and X-ray diffraction. Due to the nanometric pore sizes of this material, the surface effects have a strong influence, shifting the transition parameters (lower melting temperature and lower condensation vapour pressure respectively). In particular, the effect of chemical dissolution on the pore size distribution of porous silicon layers has been investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Defay, R., Prigogine, I., Bellemans, A. and Everett, D.H., Surface tension and adsorption (Longmans, Green & Co, London, 1966)Google Scholar
[2] Buffat, P. and Borei, J-P., Phys. Rev. A13 (1976)Google Scholar
[3] Unruh, K.M., Huber, T.E. and Huber, C.A., Phys. Rev. B48, 12, 9021 (1993)Google Scholar
[4] Mu, R. and Malhotra, V.M., Phys. Rev. B44, 9, 4296 (1991);Google Scholar
[5] Quinson, J.F. Dumas, J. and Sereghetti, J., J. of Non-Cryst. Solids 79, 397 (1986)Google Scholar
[6] Canham, L.T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
[7] Halimaoui, A., Oules, C., Bomchil, G., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M. and Muller, F., Appl. Phys. Lett. 59, 304 (1991);Google Scholar
Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 247 (1991).Google Scholar
[8] Porous silicon: Material, Technology and Devices, edited by Herino, R., Lang, W. and Munder, H., Thin Solid Films, Vol. 276 (1996).Google Scholar
[9] Beale, M.I.J., Chew, N.G., Uren, M.J., Cullis, A.G. and Benjamin, J.D., Appl. Phys. Lett. 46, 86 (1985);Google Scholar
Herino, R., Bomchil, G., Baria, K., Bertrand, C. and Ginoux, J.L., J. Electrochem. Soc. 134, 1994(1987).Google Scholar
[10] Bellet, D. and Dolino, G., Thin Solid Films 276, 1 (1996);Google Scholar
[11] Dolino, G., Bellet, D. and Faivre, C., Phys. Rev. B, to be published (1996).Google Scholar
[12] Scherer, G.W., J. Non-Crystall. Solids 155, 1 (1993)Google Scholar
[13] Couchman, P.R. and Jesser, W.A., Nature 269, 481 (1977)Google Scholar
[14] Belmont, O., Bellet, D. and Bréchet, Y., J. Appl. Phys. 79, 7586 (1996).Google Scholar
[15] Amato, G. and Brunetto, N., Mat. Lett. 26, 295 (1996)Google Scholar
[16] Faivre, C., Bellet, D. and Dolino, G., Thin Solid Films, to be published (1997)Google Scholar