Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:53:54.065Z Has data issue: false hasContentIssue false

Phase Transitions in Graphite – SbCl5 Intercalates

Published online by Cambridge University Press:  15 February 2011

Roy Clarke
Affiliation:
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Hitoshi Homma
Affiliation:
Department of Physics, The University of Michigan, Ann Arbor, Michigan, USA
Get access

Abstract

Interlayer and intralayer ordering in SbCl5-GIC's are probed by X-ray diffuse scattering. A crossover from 3-d to quasi 2-d structure is observed at around stage 2. Surprisingly, different in-plane arrangements can be obtained under nominally the same preparation conditions at the same stage. A stripe-like incommensurate structure close to the √39 superperiod of graphite, and a 14×14 commensurate superlattice structure, have been observed in different samples. The formation of these groundstate structures, and their transitions to ‘disordered’ phases, are discussed in terms of the molecular degrees of freedom.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dresselhaus, M.S. Dresselhaus, G., Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
2. Ebert, L.B., J. Molec. Catalysis 15, 275 (1982).CrossRefGoogle Scholar
3. Solin, S.A., Adv. Chem. Phys. 49, 455 (1982).CrossRefGoogle Scholar
4. From the western Adirondacks region, New York.Google Scholar
5. Mélin, J. Hérold, A., Carbon 13, 357 (1975).CrossRefGoogle Scholar
6. Mélin, J. Hérold, A., C.R. Acad. Sci. 269, 877 (1969).Google Scholar
7. Murthy, V.K.R. Smith, D.S. Eklund, P.C., Mater. Sci. Eng. 45, 77 (1980).CrossRefGoogle Scholar
8. See review by Hérold, A. in Intercalated Materials, Lévy, F. ed. (D. Reidel, Dordrecht, 1979) pp. 345352.Google Scholar
9. Clarke, R. Elzinga, M. Gray, J.N. Homma, H. Morelli, D.T. Winokur, M.J. Uher, C., Phys. Rev. B26, 5250 (1982).CrossRefGoogle Scholar
10. Elzinga, M. Morelli, D.T. Uher, C., Phys. Rev. B26, 3312 (1982).CrossRefGoogle Scholar
11. Kambe, N. Dresselhaus, G. Dresselhaus, M.S., Phys. Rev. B21, 3491 (1980).CrossRefGoogle Scholar
12. Timp, G. Dresselhaus, M.S. Salamanca-Riba, L. Erbil, A. Hobbs, L.W. Dresselhaus, G. Eklund, P.C. Iye, Y., Phys. Rev. B26, 2323 (1982).CrossRefGoogle Scholar
13. Homma, H. Clarke, R., unpublished.Google Scholar
14. Bak, P., Reports Prog. Phys. 45, 587 (1982).CrossRefGoogle Scholar
15. Bartlett, N. McQuillan, B. Robertson, A.S., Mater. Res. Bull. 13, 1259 (1978).CrossRefGoogle Scholar
16. Boolchand, P. Bresser, W.J. McDaniel, D. Sisson, K. Yeh, V. Eklund, P.C., Solid State Commun. 40, 1049 (1981).CrossRefGoogle Scholar
17. Ebert, L.B. and H. Selig. Mater. Sci. Eng. 31, 177 (1977).CrossRefGoogle Scholar
18. Moran, M.J. Fischer, J.E. Salaneck, W.R., J. Chem Phys. 73, 629 (1980).CrossRefGoogle Scholar