Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:37:33.307Z Has data issue: false hasContentIssue false

Phase Formation and Kinetic Processes in Silicide Growth.

Published online by Cambridge University Press:  22 February 2011

G. Ottaviani*
Affiliation:
Institute of Physics, Via Campi. 213/A41100 Modena, Italy.
Get access

Abstract

Twenty years of research have now been devoted to investigating reaction products obtained by annealing metal-layer/silicon structures. A wide variety of cases have been analyzsed and a considerable amount of data has been produced. Despite the vast amount of information available, several aspects concerning phase formation and kinetic processes are not yet well established. The purpose of this paper is to investigate the mechanisms of phase formation and to show the importance of kinetic factors in the appearance of various compounds. Results will be shown for a single metal layer deposited on silicon, for bilayers. and for alloys. Depending upon the starting structure, metal-rich or silicon-rich silicides can be formed. Moreover, by modifying the boundary conditions, it is possible to change the growth kinetics of the silicide phase that forms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mosian, H.,The Electric Furnace (Edward Arnold, London, 1904).Google Scholar
2. U.S. Patent 3,274,670, Sept. 27, 1966; 3,287,612, Nov. 22, 1966;Google Scholar
2a. Lepselter, M. P. and Andrews, L. M. in: Ohmic Contacts to Semiconductors, Schwartz, B., ed. (Electrochem. Soc.Princeton, NJ 1969) p. 159.Google Scholar
3. Nicolet, M. A. and Lau, S. S., “Formation and Characterization of Transition Metal Silicides”, Chapter in: VLSI Electronics: Microstructure Science, N. Einspruch, series ed., Suppl. A - Materials and Processes Characterization, G. Larrabe, guest ed. (Academic Press, New York - in press).Google Scholar
4. Ottaviani, G., J. Vac. Sci. Technol., 16, 1112 (1979).CrossRefGoogle Scholar
5. Tu, K. N. and Mayer, J. W. in: Thin Films-Interdiffusion and Reactions, Poate, J. M., Tu, K. N. and Mayer, J. W., eds. (Wiley Interscience, New York 1979).Google Scholar
6. Hansen, M., Constitution of Binary Alloys (McGraw-Hill, New York 1958);Google Scholar
6a. Elliot, R. P., Constitution of Binary Alloys, First Supplement (McGraw-Hill, New York 1965);Google Scholar
6b. Shunk, F. A, Constitution of Binary Alloys, Second Supplement (McGraw-Hill, New York 1969);Google Scholar
6c. Moffatt, W., Binary Phase Diagram Handbook (General Electric Co., Schenectady, NY 1976).Google Scholar
7. Walser, R. W. and Bene, R. W., Appl. Phys. Lett. 28, 624 (1976).CrossRefGoogle Scholar
8. Tsaur, B. Y., Lau, S. S., Mayer, J. W. and Nicolet, M. A., Appl. Phys. Lett. 38, 922 (1981).Google Scholar
9. Ronay, M., Appl. Phys. Lett. 42, 624 (1983).Google Scholar
10. Ottaviani, G. and Mayer, J. W. in: Reliability and Degradation - Semiconductor Devices and Circuits, Howes, M. J. and Morgan, D. V., eds. (J. Wiley and Sons, 1981).Google Scholar
11. Petersson, C. S., Baglin, J. E. E., Dempsey, J. J., d'Heurle, F. M. and La Placa, S. J., J. Appl. Phys. 53, 4866 (1982).Google Scholar
12. Tu, K. N., Tsaur, B. Y., Thompson, R. D., Appl. Phys. Lett. 38, 535 (1981).Google Scholar
13. Tsaur, B. Y. and Hung, C. S., Appl. Phys. Lett. 37, 922 (1980).CrossRefGoogle Scholar
14. Baglin, J. E. E., d'Heurle, F. M. and Petersson, C. S., Appl. Phys. Lett., 36, 594 (1980).Google Scholar
15. Baglin, J. E. E., d'Heurle, F. M. and Petersson, C. S., to be published.Google Scholar
16. Murarka, S. P. and Fraser, D. B., J. Appl. Phys., 51, 342 (1980).Google Scholar
17. Lau, S. S., Feng, J. S. Y., Olowolafe, J. O. and Nicolet, M. A., Thin Solid Films, 25, 415 (1975).Google Scholar
18. Colgan, E. G., Tsaur, B. Y. and Mayer, J. W., Appl. Phys. Lett., 37, 938 (1980).Google Scholar
19. Canali, C., Majni, G., Ottaviani, G. and Celotti, G., J. Appl. Phys., 50, 255 (1979).Google Scholar
20. Tu, K. N., J. Appl. Phys., 53, 428 (1982).Google Scholar
21. Langer, H. and Wachtel, E., Z. Metallkunde, 72, 769 (1981).Google Scholar
22. Baglin, J. E. E., d'Heurle, F. and Petersson, S., The Electrochemical Society Inc., Proceedings Volume 80–2, p341.Google Scholar
23. Tu, K. N., Ottaviani, G., Thompson, R. D. and Mayer, J. W., J. Appl. Phys., 53, 4406 (1982).Google Scholar
24. Majni, G., private communication,Google Scholar
25. Majni, G., Nobili, C., Ottaviani, G., Costato, M. and Galli, E., J. Appl. Phys., 52, 4047 (1981).CrossRefGoogle Scholar
26. Tu, K. N., Hammer, W. N. and Olowalafe, J. O., J. Appl. Phys., 51, 1663 (1980).Google Scholar
27. Eizenberg, M. and Tu, K. N., J. Appl. Phys., 553. 1577 (1982).CrossRefGoogle Scholar
28. Ottaviani, G., private communication.Google Scholar
29. Mantovani, S., Nava, F., Nobili, C., Queirolo, G. and Celotti, G., to be published.Google Scholar
30. Ottaviani, G., Tu, K. N., Chu, W. K., Hung, L. S. and Mayer, J. W., J. Appl. Phys., 53, 4903 (1982).CrossRefGoogle Scholar
31. Majni, G., Costato, M., della Valle, F. and Nobili, C., to be published.Google Scholar
32. Wittmer, M., J. Appl. Phys., 54, 5081 (1983).Google Scholar
33. Nava, F., Valeri, S., Majni, G.. Cembali, A., Pignatel, G. and Queirolo, G., J. Appl. Phys.,52, 6641 (1981).Google Scholar
34. Nava, F., Majni, G., Cantoni, P., Pignatel, G., Ferla, G., Cappelletti, P. and Mori, F., Thin Solid Films, 94, 59 (1982).CrossRefGoogle Scholar
35. Dai, T. T., Ottaviani, G. and Tu, K. N., to be published.Google Scholar
36. Dai, T. T., Ottaviani, G. and Tu, K. N., this symposium.Google Scholar
37. Rubloff, G. W. and Ho, P. S., Mat. Res. Soc. Symp. Proc., l0, 21 (1982).Google Scholar
38. Nava, F., private communication.Google Scholar