Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-03T02:52:31.844Z Has data issue: false hasContentIssue false

Phase Field Simulation of Coarsening Kinetics in Al-Sc and Al-Sc-Zr Alloys

Published online by Cambridge University Press:  21 September 2018

H. Zapolsky
Affiliation:
GPM, UMR 6634 CNRS, University of Rouen, Avenue de l'Université, BP 12, 76801 Saint-Etienne du Rouvray , France
J. Boisse
Affiliation:
GPM, UMR 6634 CNRS, University of Rouen, Avenue de l'Université, BP 12, 76801 Saint-Etienne du Rouvray , France
R. Patte
Affiliation:
GPM, UMR 6634 CNRS, University of Rouen, Avenue de l'Université, BP 12, 76801 Saint-Etienne du Rouvray , France
N. Lecoq
Affiliation:
GPM, UMR 6634 CNRS, University of Rouen, Avenue de l'Université, BP 12, 76801 Saint-Etienne du Rouvray , France
Get access

Abstract

The coarsening kinetics of γ’ precipitates in binary and ternary Al3Sc1-xZrx alloys is studied by using the two- and three-dimensional phase-field simulations. Our focus is on the influence of diffusion coefficients of Sc and Zr atoms on the transformation path kinetics from disordered f.c.c. matrix to two phases equilibrium state with γ’ precipitates and f.c.c. disordered matrix. Our simulation results demonstrate that in the case of binary alloys taking into account the concentration dependence of the mobility of atoms decreases the coarsening rate. In the case of ternary alloys we show that the Al3Sc particles precipitate first following by appearance of a Zr-rich shell. Our simulations results are in good agreement with experimental observations.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Fuller, C.B., Seidman, D.N. and Dunand, D.C., Acta Mater. 51, 4803 (2003).Google Scholar
[2] Davydov, V.G., Rostova, T.D., Zakharov, V.V., Filatov, Y.A. and Yelagin, V.I., Mater. Sci. Eng. 208, 30 (2000).Google Scholar
[3] Iwamura, S. and Miura, Y., Acta Mater. 52, 591 (2004).Google Scholar
[4] Tolley, A., Radmilovic, V. and Dahmen, U., Scripta Mater., 52, 7, 621 (2005).Google Scholar
[5] Riddle, Y.W. and Sanders, T.H., Metal. Mater. Trans. A, 35, 341 (2004).Google Scholar
[6] Harada, Y. and Dunand, D.C., Mater. Sci. Eng. A, 329-331, 686 (2002).Google Scholar
[7] Forbord, B., Lefebvre, W., Danoix, F., Hallem, H. and Marthinsen, K., Scripta Mater., 51, 333 (2004).Google Scholar
[8] Fuller, C.B., Murray, J.L. and Seidman, D.N., Acta Mater., 53, 5401 (2005).Google Scholar
[9] Chen, L. Q., Annu. Rev. Mater. Res., 32, 113 (2002).Google Scholar
[10] Vaithyanathan, V. and Chen, L.Q., Acta Mater., 50, 4061 (2002).Google Scholar
[11] Boisse, J., Lecoq, N., Patte, R. and Zapolsky, H., Acta. Mater., 55, 6151 (2007).Google Scholar
[12] Khachaturyan, A.G., Theory of structural transformations in solids. (John Wiley, New York) 1983.Google Scholar
[13] Chen, L.Q. and Shen, J., J. Comp. Phys. Comm., 108, 147 (1998).Google Scholar
[14] Marquis, E.A. and Seidman, D.N., Acta Mater., 49, 1909 (2001).Google Scholar
[15] Hyland, R. W. and Stiffler, R.C., Scripta Metall. Mater., 25, 473 (1991).Google Scholar
[16] Ma, Y. and Ardell, A.J., Acta Mater., 55, 4419 (2007).Google Scholar
[17] Clouet, E., Lae, L., Epicier, T., Lefebvre, W., Nastar, M. and Deschamp, A., Nature Mater. 5, 482 (2006).Google Scholar
[18] Marquis, E.A., D.N. Seidman and Dunand, D.C., Acta Mater., 51, 4751 (2003).Google Scholar
[19] Lefebvre, W., Danoix, F., Halem, H., Forbord, B., Bostel, A. and Marthinsen, K., J. Alloys Compd., (2008), in print. http://dx.doi.org/10.1016/j.jallcom.2008.02.043 Google Scholar
[20] C.B. Fuller and Seidman, D.N., Acta Mater. 53, 5415 (2005).Google Scholar