Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-20T01:35:21.422Z Has data issue: false hasContentIssue false

Phase Equilibria and Oxidation Behavior of C40 Disilicides in the Nb-Cr-Si System

Published online by Cambridge University Press:  02 February 2015

Nobuaki Sekido
Affiliation:
National Institute for Materials Science, Tsukuba 305-0047, Japan
Ryoma Aizawa
Affiliation:
College of Engineering, Nippon University, Koriyama 963-8642, Japan
Shunkichi Ueno
Affiliation:
College of Engineering, Nippon University, Koriyama 963-8642, Japan
Get access

Abstract

The phase equilibrium and oxidation behavior of the disilicides that form in the Nb-Cr-Si ternary system have been investigated. Although NbSi2 and CrSi2 both exhibit a C40 crystal structure, they form separate ranges of compositional homogeneity in the ternary system. Their phase boundaries at 1300 °C have been experimentally determined in this study. The binary NbSi2 exhibited poor oxidation resistance, showing pest-like behavior during oxidation at temperature above 800 °C. In contrast, the alloys containing Cr showed much better oxidation resistance up to 1200 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bewlay, B. P., Jackson, M. R., Zhao, J.-C., Mendiratta, M. G., Lewandowski, J. J., and Subramanian, P. R., MRS Bull. 28 (2003), 646.CrossRefGoogle Scholar
Sekido, N., Kimura, Y., Wei, F. G., Miura, S., and Mishima, Y., J. Alloys Compds. 425 (2006), 223.CrossRefGoogle Scholar
Priceman, S. and Sama, L., US Patent 3,540,863 (1970).Google Scholar
Kurokawa, K., Matsuoka, H., and Nagai, H., Trans. Mater. Res. Soc. Jpn, 14A (1994), 255.Google Scholar
Subramanian, P. R., Mendiratta, M. G., Dimiduk, D. M., and Stucke, M. A., Mat. Sci. Eng. A, 239240 (1997), 1.CrossRefGoogle Scholar
Izumi, F. and Ikeda, T., Materials Science Forum, 321324 (2000), 198.CrossRefGoogle Scholar
Cornish, L., Cupid, D. M., Gröbner, J., and Malfliet, A., in: Refractory Metal Systems: Phase Diagrams, Crystallographic and Thermodynamic Data. vol. 11E3, Eds. Effenberg, G. and Ilyenko, S., Springer-Verlag (2010), p. 210.CrossRefGoogle Scholar
Shao, G., Intermetallics, 13 (2005), 69.CrossRefGoogle Scholar
Zhao, J.-C., Jackson, M. R., and Peluso, L. A., Acta Mater. 51 (2003), 6395.CrossRefGoogle Scholar
Goldschmidt, H. J. and Brand, J. A., J. Less Common Met. 3 (1961), 34.CrossRefGoogle Scholar
Villars, P. and Cenzual, K., “Pearson's Crystal Data”, ASM International (2007).Google Scholar
Graham, H. C. and Davis, H. H., J. Amer. Ceram. Soc. 54 (1971), 89.CrossRefGoogle Scholar
Caplan, D. and Cohen, M., J. Electrochem. Soc., 108 (1961), 438.CrossRefGoogle Scholar
Samsonov, G. V., Lavrenko, V. A., and Glebov, L. A., Soviet Powder Metall. Metal Ceram. 13 (1974), 36.CrossRefGoogle Scholar
Horache, E., Fischer, J. E., and Van Der Spiegel, J., J. Appl. Phys. 68 (1990), 4652.CrossRefGoogle Scholar
Yaney, D. L. and Joshi, A., J. Mater. Res. 5 (1990), 2197.CrossRefGoogle Scholar
Jiang, H., Whitlow, H. J., Östling, M., Niemi, E., D'Heurle, F. M., and Petersson, C. S., J. Appl. Phys. 65 (1989), 567.CrossRefGoogle Scholar
Kurokawa, K. and Yamauchi, A., Solid State Phenomena 127 (2007), 227.CrossRefGoogle Scholar