Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:09:09.505Z Has data issue: false hasContentIssue false

Performances of Epitaxial Diamond in the Field of X-ray Diagnostics

Published online by Cambridge University Press:  01 February 2011

Claudio Manfredotti
Affiliation:
[email protected], University of Torino, Experimental Physics Department, Via Giuria 1, Torino, 10125, Italy, +390116707306, +390116691104
Alessandro Lo Giudice
Affiliation:
[email protected], University of Torino, Experimental Physics Department, Via Giuria 1, Torino, 10125, Italy
S. Almaviva
Affiliation:
[email protected], University of Roma "Tor Vergata", Department of Mechanical Engineering, Roma, 00100, Italy
G. Verona-Rinati
Affiliation:
[email protected], University of Roma "Tor Vergata", Department of Mechanical Engineering, Roma, 00100, Italy
Get access

Abstract

A thin epitaxial single crystal CVD (Chemical Vapour Deposited) diamond detector has been used in order to monitor the X-ray pulses coming out from a standard, portable, medical X-ray apparatus. The current pulses have been acquired and digitized in order to obtain the pulse shape, timing and dose. The obtained data were successfully compared with standard X-ray monitors like air ionization chambers and silicon detector arrays. The results strongly suggest a possible use of CVD epitaxial diamond in the field of X-ray diagnostics for energies up to 120 keV and doses up to 125 mGy and for X-ray pulse timing from 0.1 s or below and 2 s or more.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Garino, Y., Giudice, A. Lo, Manfredotti, C., Marinelli, Marco, Milani, E., Tucciarone, A. and Verona-Rinati, G., Applied Physics Letters 88 (2006) 151901 Google Scholar
2. Balducci, A., Garino, Y., Giudice, A. Lo, Manfredotti, C., Marinelli, Marco, Pucella, G. and Verona-Rinati, G., Diamond and Related Materials 15 (2006) 797801 Google Scholar
3. Koslov, S. F., Koronova, E. A., Kuznetsov, Y. A., Salikov, Y. A., Redko, V. I., Grinberg, V. R. and Meilman, M. L., IEEE Trans. Nucl. Sci. NS-24, 235 (1977)Google Scholar
4. Planskoy, B., Phys. Med. Biol. 25, 519 (1980)Google Scholar
5. Laub, W. U., Kaulich, T. W. and Nuesslin, F., Phys. Med. Biol. 44, 2183 (1999)Google Scholar
6. Vittone, E. and Manfredotti, C., in “Properties, growth and applications of diamond”, Ed. Nazaré, M. H. and Neves, A. J., INSPEC London 2001, p. 386 Google Scholar
7. Manfredotti, C., Giudice, A. Lo, Ricciardi, C., Paolini, C., Massa, E., Fizzotti, F. and Vittone, E., Nucl. Instr. Meth in Phys. Res. A 458, 360(2001)Google Scholar
8. Manfredotti, C., Diamond and Related Materials 14, 531 (2005)Google Scholar
9. Bergonzo, P., Brambilla, A., Tromason, D., Mer, C., Guizard, B., Foulon, F. and Amosov, V., Diamond and Related Materials 10, 631 (2001)Google Scholar
10. Ramkumar, S., Buttar, C., Conway, J., Whitehead, A., Airey, R., Sussmann, R., Hill, G. and Walker, S., Nucl. Instr. Meth in Phys. Res. A 460, 401(2002)Google Scholar
11. Bruzzi, M., Menichelli, D., Pini, S., Bucciolini, M., Molnar, J. and Fenyvesi, A., Appl. Phys. Lett. 81, 298 (2002 10.1063/1.1491014Google Scholar
12. Marinelli, Marco, Milani, E., Paoletti, A., Tucciarone, A., Verona-Rinati, G., Angelone, M., Pillon, M., Appl. Phys. Lett. 75, 3216 (1999)Google Scholar