Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T09:21:00.813Z Has data issue: false hasContentIssue false

Patterning of GaN in High-Density Cl2- and BCl3-Based Plasmas

Published online by Cambridge University Press:  10 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, [email protected]
R. D. Briggs
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, [email protected]
J. Han
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
J. W. Lee
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. B. Vartuli
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
K. P. Killeen
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, CA 94304
M. J. Ludowise
Affiliation:
Hewlett-Packard Laboratories, Palo Alto, CA 94304
Get access

Abstract

Fabrication of group-Ill nitride electronic and photonic devices relies heavily on the ability to pattern features with anisotropie profiles, smooth surface morphologies, etch rates often exceeding 0.5 μm/min, and a low degree of plasma-induced damage. Patterning these materials has been especially difficult due to their high bond energies and their relatively inert chemical nature as compared to other compound semiconductors. However, high-density plasma etching has been an effective patterning technique due to ion fluxes which are 2 to 4 orders of magnitude higher than conventional RIE systems. GaN etch rates as high as -1.3 μm/min have been reported in ECR generated ICI plasmas at -150 V dc-bias. In this study, we report high-density GaN etch results for ECR- and ICP-generated plasmas as a function of Cl2- and BCl3-based plasma chemistries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
2. Nakamura, S., Mukai, T., Senoh, M., and Iwasa, N., Jpn. J. Appl. Phys. 31, L139 (1992).Google Scholar
3. Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62, 2859 (1993).Google Scholar
4. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K., and Gaskill, D. K., Electron. Lett. 30, 1248 (1994).Google Scholar
5. Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
6. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
7. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushito, T., Kiyoku, H., and Sugimoto, U., Jap. J. Appl. Phys. 35, L74 (1996).Google Scholar
8. Matsuoka, T., Sasaki, T., and Katsui, A., Optoelectronic Devices and Technologies 5, 53 (1990).Google Scholar
9. Amano, H., Kito, M., Hiramatsu, K., and Akasuki, I., Jpn. J. Appl. Phys. 28, L2112 (1989).Google Scholar
10. Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
11. Kahn, M. A., Kuzina, J. N., Van Hove, J. M., Olson, D. T., Krishnankutty, S., and Kolbas, R. M., Appl. Phys. Lett. 58, 526 (1991).Google Scholar
12. Khan, M. A., Bhattarai, A., Kuznia, J. N., and Olson, D. T., Appl. Phys. Lett. 63, 1214 (1993).Google Scholar
13. Davis, R. F.. Proc. IEEE 79, 702 (1991).Google Scholar
14. Akasaki, I., Amano, H., Kito, M., and Kiramatsu, K., Lumin. 48/49, 666 (1991).Google Scholar
15. Khan, M. A., Chen, Q., Shur, M. S., Dermott, B. T., Higgins, J. A., Burm, J., Schaff, W., and Eastman, L. F., Electron. Lett. 32, 257 (1996).Google Scholar
16. Zolper, J. C., Shul, R. J, Baca, A. G., Wilson, R. G., Pearton, S. J., and Stall, R. A., Appl. Phys. Lett. 68, 2273 (1996).Google Scholar
17. see for example, High-density Plasma Sources, ed. Popov, O. A. (Noyes Publications, Park Ridge, NJ, 1996).Google Scholar
18. Lieberonan, M. A. and Gottscho, R. A., in Plasma Sources for Thin Film Deposition and Etching, ed. Francombe, M. H. and Vossen, J. L., Physics of Thin Films Vol. 18 (Academic Press, San Diego, 1994).Google Scholar
19. Chu, T. L., J. Electrochem. Soc. 119, 1200 (1971).Google Scholar
20. Pankove, J. I., J. Electrochem, Soc. 119, 1118 (1972).Google Scholar
21. Guo, Q. X., Kato, O., and Yoshida, A., J. Electrochem. Soc. 139, 2008 (1992).Google Scholar
22. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. W., and Katz, A., J. Vac. Sci. Technol. All, 1772 (1993).Google Scholar
23. Sheng, T. Y., Yu, Z. Q., and Collins, G. J., Appl. Phys. Lett. 52, 576 (1988).Google Scholar
24. Pauleau, T., J. Electrochem. Soc. 129, 1045 (1982).Google Scholar
25. Taylor, K. M., and Lenie, C., J. Electrochem. Soc. 107, 308 (1960).Google Scholar
26. Long, G. and Fuster, L. M., J. Am. Ceram. Soc. 42, 53 (1959).Google Scholar
27. Barrett, N. J., Grange, J. D., Sealy, B. J., and Stephens, K. G., J. Appl. Phys. 57, 5470 (1985).Google Scholar
28. Aita, C. R. and Gawlak, C. J., J. Vac. Sci. Technol. A1, 403 (1983).Google Scholar
29. Kline, G. R. and Lakin, K. M., Appl. Phys. Lett. 43, 750 (1983).Google Scholar
30. Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J., and Kilcoyne, S. P., J. Vac. Sci. Technol. A14, 836 (1996).Google Scholar
31. Adesida, L, Mahajan, A., Andideh, E., Asif Khan, M., Olsen, D. T., and Kuznia, J. N., Appl. Phys. Lett. 63, 2777.Google Scholar
32. Lin, M. E., Zan, Z. F., Ma, Z., Allen, L. H., and Morkoc, H., Appl. Phys. Lett. 64, 887 (1994).Google Scholar
33. Ping, A. T., Adesida, I., Asif Khan, M., and Kuznia, J. N., Electron. Lett. 30, 1895 (1994).Google Scholar
34. Lee, H., Oberman, D. B., and Harris, J. S. Jr, J. Electron. Mat. 25, 835 (1996).Google Scholar
35. Vartuli, C. B., Pearton, S. J., Lee, J. W., Hong, J., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys. Lett. 69, 1426 (1996).Google Scholar
36. Vartuli, C. B., MacKenzie, J. D., Lee, J. W., Abernathy, C. R., Pearton, S. J., and Shul, R. J., J. Appl. Phys. 80, 3705 (1996).Google Scholar
37. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 2294 (1994).Google Scholar
38. Pearton, S. J., Abernathy, C. R., and Ren, F., Appl. Phys. Lett. 64, 3643 (1994).Google Scholar
39. Shul, R. J., Kilcoyne, S. P, Hagerott Crawford, M., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
40. Zhang, L., Ramer, J., Brown, J., Zheng, K., Lester, L. F., and Hersee, S. D., Appl. Phys. Lett. 68, 367 (1996).Google Scholar
41. Shul, R. J., Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Barnes, P. A., and Bozack, M. J., J. Vac. Sci. Technol. B13, 2016 (1995).Google Scholar
42. McLane, G. F., Casas, L., Pearton, S. J., and Abernathy, C. R., Appl. Phys. Lett. 66, 3328 (1995).Google Scholar
43. Adesida, I., Ping, A. T., Youtsey, C., Dow, T.T., Asif Khan, M., Olson, D. T., and Kuzina, J. N., Appl. Phys. Lett 65, 889 (1994).Google Scholar
44. Shul, R. J., McClellan, G. B., Casalnuovo, S. A., Rieger, D. J., Pearton, S. J., Constantine, C., Barratt, C., Karlicek, R. F. Jr, Tran, C., and Schurman, M., Appl. Phys. Lett. 69, 1119(1996).Google Scholar
45. Gillis, H. P., Choutov, D. A., and Marlin, K. P., JOM, 50 (1996).Google Scholar
46. Pearton, S. J. and Shul, R. J., “III-Nitrides”, Academic Press, in press.Google Scholar
47. Ren, F., Lothian, J. R., Kuo, J. M., Hobson, W. S., Lopata, J., Caballero, J. A., Pearton, S. J., and Cole, M. W., J. Vac. Sci. Technol. B14, 1 (1995).Google Scholar
48. Ren, F., Hobson, W. S., Lothian, J. R., Lopata, J., Caballero, J. A., Pearton, S. J., and Cole, M. W., Appl. Phys. Lett. 67, 2497 (1995).Google Scholar
49. Shul, R. J., McClellan, G. B., Briggs, R. D., Rieger, D. J., Pearton, S. J., Abernathy, C. R., Lee, J. W., Constantine, C., and Barratt, C., J. Vac. Sci. and Technol. A, in press, (1996).Google Scholar