Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:36:26.908Z Has data issue: false hasContentIssue false

Patterning III-N Semiconductors by Low Energy Electron Enhanced Etching (LE4)

Published online by Cambridge University Press:  15 February 2011

H.P. Gillis
Affiliation:
Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095.
M.B. Christopher
Affiliation:
Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095.
K.P. Martin
Affiliation:
Microelectronics Research Center, Georgia Tech, Atlanta, GA 30332
D.A. Choutov
Affiliation:
Microelectronics Research Center, Georgia Tech, Atlanta, GA 30332
Get access

Abstract

Fabricating device structures from the III-N wide ba-ndgap semiconductors requires anisotropoic dry etching processes that leave smooth surfaces with stoichiometric composition after transferring high-resolution patterns with vertical sidewalls. The purpose of this article is to describe results obtained by a new low-damage dry etching technique that provides an alternative to the standard ion-enhanced dry etching methods in meeting these demands for processing the HI-N materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Strite, S., “The HII-V Nitride Semiconductors for Blue Light Emission,” in Helbig, R. (ed.) Advances in Solid State Physics 34, Vieweg, Braunschweig/Wiesbaden, Germany, 1995. pp. 7995.Google Scholar
2 Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 1237 (1992).Google Scholar
3 Strite, S., Lin, M.E., and Morkoc, H., Thin Solid Films, 231, 197 (1993).Google Scholar
4 Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797 (1995).Google Scholar
5 Nakamura, S., Senoh, M., Iwasa, N., Nagahama, S., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
6 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsusha, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
7 Burn, J., Schaff, W.J., and Eastman, L.F., Appl. Phys. Lett. 68, 2649 (1996).Google Scholar
8 Pearton, S.J., Lee, J.W., MacKenzxie, J.D., Abernathy, C.R., and Shul, R.J., Appl. Phys. Lett. 67, 2329 (1995).Google Scholar
9 Mileham, J.R., Pearton, S.J., Abernathy, C.R., MacKenzie, J.D., Shul, R.J., and Kilcoyne, S.P., Appl. Phys. Lett. 67, 1119 (1995).Google Scholar
10 Minsky, M.S., White, A.M., and Hu, E.L., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
11 Adesida, I., Mahajan, A., Andideh, E., Khan, M.A., Olsen, D.T., and Kuznia, J.N., Appl. Phys. Lett. 63, 2777 (1993).Google Scholar
12 Lin, M.E., Fan, Z., Ma, Z., Allen, L. H., and Morkoc, H, Appl. Phys. Lett. 64, 887 (1994).Google Scholar
13 Ping, A. T., Adesida, I., Khan, M. A., and Kuznia, J. N., Electr. Lett. 30, 1895 (1994).Google Scholar
14 Pearton, S.J., Vartuli, C.B., Shul, R.J., and Zolper, J.C., Mat. Sci. Eng. B31, 309 (1995).Google Scholar
15 Shul, R.J., Kilcoyne, S.P., Crawford, M. Hagerott, Patmeter, J.E., Vartuli, C.B., Abernathy, C.R., and Pearton, S.J., Appl. Phys. Lett. 66, 1761 (1995).Google Scholar
16 Shul, R.J., Howard, A.J., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Bozack, M.J., J. Vac. Sci. Technol. B13, 2016 (1995).Google Scholar
17 Pearton, S. J., Lee, J. W., MacKenzie, J. D., Abernathy, C. R., and Shul, R. J., Appl. Phys Lett., 67, 2329 (1995)Google Scholar
18 Shul, R.J., Howard, A.J., Kilcoyne, S.P., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Bozack, M.J., Electrochemical Society Proceedings, 95–6, 209 (1995).Google Scholar
19 Adesida, I., Ping, A.T., Youtsey, C., Dow, T., Khan, M.A., Olson, D.T., and Kuznia, J.N., Appl. Phys. Lett. 65, 889 (1994).Google Scholar
20 Ping, A.T., Youtsey, C., Adesida, I., Khan, M.A., and Kuznia, J.N., Jour. Electr. Mat. 24, 229 (1995).Google Scholar
21 Ping, A.T., Adesida, I., and Khan, M.A., Appl. Phys. Lett. 67, 1250 (1995).Google Scholar
22 Ping, A.T., Schmitz, A.C., Khan, M.A., and Adesida, I., Jour. Electr. Mat. 25, 825 (1996).Google Scholar
23 Gillis, H.P., Choutov, D.A., and Martin, K.P., J. of Mat. 48, 50 (1996).Google Scholar
24 Shul, R.J. et al, MRS Bulletin, Spring 1998 Google Scholar
25 Gillis, H.P., Choutov, D.A., Steiner, P.A. IV, Piper, J.D., Crouch, J.H., Dove, P. M., and Martin, K.P., Appl. Phys. Lett. 66, 2475 (1995).Google Scholar
26 Gillis, H.P., Choutov, D.A., Martin, K.P., and Song, Li, Appl. Phys. Lett. 68, 2255 (1996).Google Scholar
27 Gillis, H.P., Choutov, D.A., Martin, K.P., Pearton, S.J., and Abernathy, C.R., J. Electrochem. Soc., 143, L251 (1996).Google Scholar
28 Gillis, H.P., Choutov, D.A., Martin, K.P., Bremser, M.D., and Davis, R.F., J. Electron. Mat. 26, 301 (1997).Google Scholar
29 Gillis, H.P., Clemons, J.L, and Chamberlain, J.P., Jour. Vac. Sci. Technol. B10, 2729 (1992).Google Scholar
30 Winningham, T.A., Gillis, H.P., Choutov, D.A., Martin, K.P., Moore, J.T., and Douglas, K., “Formation of Ordered Nanocluster Arrays by Self-Assembly on Nanopatterned Si(100) Surfaces,” Surf. Sci. 406, 221 (1998)..Google Scholar
31 Shul, R.J., Howard, A.J., Kilcoyne, S.P., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Bozack, M.J., Electrochemical Society Proceedings, 95–6, 209 (1995).Google Scholar
32 Shul, R.J., Howard, A.J., Kilcoyne, S.P., Pearton, S.J., Abernathy, C.R., Vartuli, C.B., Barnes, P.A., and Bozack, M.J., Electrochemical Society Proceedings 95–6, 209 (1995).Google Scholar
33 Pearton, S.J., Emerson, A.B., Chakrabarti, U.K., Lane, E., Jones, K.S., Short, K.T., White, A. E., and Fullowan, T.R., J. Appl. Phys., 66, 3839 (1989).Google Scholar