Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T15:27:58.696Z Has data issue: false hasContentIssue false

Patterned Growth of Long and Clean Boron Nitride Nanotubes on Substrates

Published online by Cambridge University Press:  31 January 2011

Chee Huei Lee
Affiliation:
[email protected], Michigan Technological University, Physics, Houghton, Michigan, United States
Ming Xie
Affiliation:
[email protected], Michigan Technological University, Physics, Houghton, Michigan, United States
Jiesheng Wang
Affiliation:
[email protected], Michigan Technological University, Physics, Houghton, Michigan, United States
Russell E. Cook
Affiliation:
[email protected], Argonne National Laboratory, Electron Microscopy Center, Argonne, Illinois, United States
Yoke Khin Yap
Affiliation:
[email protected], Michigan Technological University, Physics, Houghton, Michigan, United States
Get access

Abstract

For the first time, patterned growth of boron nitride nanotubes (BNNTs) on Si substrates has been achieved by catalytic chemical vapor deposition (CCVD). Following the boron oxide chemical pathway and our growth vapor trapping approach, high quality and quantity BNNTs can be produced. Effective catalysts have been found to facilitate the growth of BNNTs, while some critical parameters of the synthesis have also been identified to control the quality and density. The success of patterned growth of high quality BNNTs not only explains the roles of the effective catalysts during the synthesis process, but could also be of technologically important for future device fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blase, X., Rubio, A., Louie, S. G., and Cohen, M. L., Europhys. Lett. 28, 335 (1994).Google Scholar
2. Chopra, N. G. and Zettl, A., Solid State Commun. 105, 297 (1998).Google Scholar
3. Golberg, D., Bando, Y., Tang, C. C., and Zhi, C. Y., Adv. Mater. 19, 2413 (2007).Google Scholar
4. Chen, Y., Zou, J., Campbell, S. J., and Caer, G. L., Appl. Phys. Lett. 84, 2430 (2004).Google Scholar
5. Tang, C., Bando, Y., Huang, Y., Yue, S., Gu, C., Xu, F., and Golberg, D., J. Am. Chem. Soc. 127, 6552 (2005).Google Scholar
6. Ishigami, M., Sau, J. D., Aloni, S., Cohen, M. L., and Zettl, A., Phys. Rev. Lett. 94, 056804 (2005).Google Scholar
7. Bai, X., Golberg, D., Bando, Y., Zhi, C., Tang, C., Mitome, M., and Kurashima, K., Nano Lett. 7, 632 (2007).Google Scholar
8. Ciofani, G., Raffa, V., Menciassi, A., and Cuschieri, A., Nanoscale Research Letters 4, 113 (2009).Google Scholar
9. Huang, Q., Bando, Y., Xu, X., Nishimura, T., Zhi, C., Tang, C., Xu, F., Gao, L., and Golberg, D., Nanotechnology 18, 485706 (2007).Google Scholar
10. Chopra, N. G., Luyken, R. J., Cherrey, K., Crespi, V. H., Cohen, M. L., Louie, S. G., and Zettl, A., Science 269, 966 (1995).Google Scholar
11. Cumings, J. and Zettl, A., Chem. Phys. Lett. 316, 211 (2000).Google Scholar
12. Yu, D. P., et al., Appl. Phys. Lett. 72, 1966 (1998).Google Scholar
13. Arenal, R., Stephan, O., Cochon, J. L., and Loiseau, A., J. Am. Chem. Soc. 129, 16183 (2007).Google Scholar
14. Han, W., Bando, Y., Kurashima, K., and Sato, T., Appl. Phys. Lett. 73, 3085 (1998).Google Scholar
15. Lourie, O. R., Jones, C. R., Bartlett, B. M., Gibbons, P. C., Ruoff, R. S., and Buhro, W. E., Chem. Mater. 12, 1808 (2000).Google Scholar
16. Kim, M. J., Chatterjee, S., Kim, S. M., Stach, E. A., Bradley, M. G., Pender, M. J., Sneddon, L. G., and Maruyama, B., Nano Lett. 8, 3298 (2008).Google Scholar
17. Tang, C., Bando, Y., Sato, T., and Kurashima, K., Chem. Commun. 1290 (2002).Google Scholar
18. Zhi, C., Bando, Y., Tan, C., and Golberg, D., Solid State Commun. 135, 67 (2005).Google Scholar
19. Chen, H., Chen, Y., Liu, Y., Fu, L., Huang, C., and Llewellyn, D., Chem. Phys. Lett. 463, 130 (2008).Google Scholar
20. Wang, J., Kayastha, V. K., Yap, Y. K., Fan, Z., Lu, J. G., Pan, Z., Ivanov, I. N., Puretzky, A. A., and Geohegan, D. B., Nano Lett. 5, 2528 (2005).Google Scholar
21. Lee, C. H., Wang, J., Kayatsha, V. K., Huang, J. Y., and Yap, Y. K., Nanotechnology 19, 455605 (2008).Google Scholar
22. Kayastha, V. K., Wu, S., Moscatello, J., and Yap, Y. K., J. Phys. Chem. C 111, 10158 (2007).Google Scholar
23. Mensah, S. L., Kayastha, V. K., and Yap, Y. K., J. Phys. Chem. C 111, 16092 (2007).Google Scholar
24. Mensah, S. L., Kayastha, V. K., Ivanov, I. N., Geohegan, D. B., and Yap, Y. K., Appl. Phys. Lett. 90, 113108 (2007).Google Scholar
25. Brent, A. W., Kimberly, A. D., Jonas, J., Magnus, T. B., Knut, D., and Lars, S., Adv. Mater. 21, 153 (2009).Google Scholar
26. Lee, C. H., Drelich, J., and Yap, Y. K., Langmuir 25, 4853 (2009).Google Scholar
27. Wirtz, L., Rubio, A., Concha, R. A. de la, and Loiseau, A., Phys. Rev. B 68, 045425 (2003).Google Scholar
28. Jaffrennou, P., Barjon, J., Lauret, J. S., Maguer, A., Golberg, D., Attal-Trétout, B., Ducastelle, F., and Loiseau, A., phys. stat. sol. (b) 244, 4147 (2007).Google Scholar
29. Lee, C. H., Xie, M., Kayastha, V., Wang, J. and Yap, Y. K., Chem. Mater., Articles ASAP (DOI: 10.1021/cm903287u). (URL: http://pubs.acs.org/doi/full/10.1021/cm903287u)Google Scholar