Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:52:40.805Z Has data issue: false hasContentIssue false

Parameterization of Transient Models of Defect Dynamics in Czochralski Silicion Crystal Growth

Published online by Cambridge University Press:  17 March 2011

Talid Sinno
Affiliation:
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA 19104
Thomas Frewen
Affiliation:
Department of Chemical Engineering, University of Pennsylvania, Philadelphia, PA 19104
Erich Dornberger
Affiliation:
Wacker Siltronic AG Burghausen D84479, Germany
Robert Hoelzl
Affiliation:
Wacker Siltronic AG Burghausen D84479, Germany
Christian Hoess
Affiliation:
Wacker Siltronic AG Burghausen D84479, Germany
Get access

Abstract

A transient model for point defect dynamics during Czochralski silicon crystal growth is parameterized using detailed experimental data generated under varying crystal growth conditions. Simulated Annealing is used to perform the model parameterization because of the complex nature of the defined objective functions. It is shown that the method is robust and despite the computational expense associated with a large number of function evaluations, can be readily used in multiple dataset, multiple objective function environments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Bracht, H., Stolwijk, N.A. and Mehrer, H.. Phys. Rev. B 52–23, (1995) 16542.Google Scholar
[2] Sinno, T., Dornberger, E., Ammon, W. von, Brown, R. A. and Dupret, F.. Mat. Sci. Eng. R28, (2000) 149.Google Scholar
[3] Tan, T. Y., Gosele, U.. Appl. Phys. A37, (1985) 117.Google Scholar
[4] Kirkpatrick, S., Gelatt, C. Jr and Vecchi, M., Science 220, (1983) 498.Google Scholar
[5] Ingber, L.. Math. Comput. Model. 15, (1991) 7798.Google Scholar
[6] Falster, R., Voronkov, V. V. and Quast, F.. Phys. Stat. Sol. (b) 222, (2000) 219.Google Scholar
[7] Voronkov, V. V., Falster, R.. J. Cryst. Growth. 194, (1998) 76.Google Scholar
[8] Sinno, T., Brown, R.A.. Dornberger, E., and Ammon, W. von, J. Electrochem. Soc. 145, (1998) 303.Google Scholar
[9] Voronkov, V. V.. J. Cryst. Growth. 59, (1982) 625.Google Scholar
[10] Dupret, F., Nicodeme, P., Ryckmans, Y., Wouters, P., Crochet, M., Int. J. Heat Mass Trans. 33, (1990) 1849.Google Scholar
[11] Bracht, H.. Electrochem. Soc. Proc. 99–1, (1999) 357.Google Scholar
[12] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1992).Google Scholar
[13] Lipchin, A., Brown, R.A.. J. Cryst. Growth. 216, (2000) 192.Google Scholar