Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:51:26.069Z Has data issue: false hasContentIssue false

Palladium Nanowire Thin Films via Template Growth

Published online by Cambridge University Press:  10 February 2011

Donghai Wang
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA
David T. Johnson
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA
Byron F. McCaughey
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA
J. Eric Hampsey
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA
Jibao He
Affiliation:
Coordinated Instrumentation Facility, Tulane University, New Orleans, LA 70118 USA
Yunfeng Lu
Affiliation:
Department of Chemical Engineering, Tulane University, New Orleans, LA 70118 USA
Get access

Abstract

Palladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Andres, R. P., Bielefeld, J. D., Henderson, J. I., Janes, D. B., Kolagunta, V. R., Kubiak, C. P., Mahoney, W. J., and Osifchin, R. G., Science (Washington, D. C.), 273, 1690, (1996).Google Scholar
2. Favier, F., Walter, E. C.,Zach, M. P.,; Benter, T., and Penner, R.M., Science (Washington, DC, United States), 293, 2227, (2001).Google Scholar
3. Thurn-Albrecht, T., Schotter, J., Kastle, G. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., and Russell, T. P., Science (Washington, D. C.), 290, 2126, (2000).Google Scholar
4. Song, J. H., Wu, Y., Messer, B., Kind, H., and Yang, P., Journal of the American Chemical Society, 123, 10397, (2001).Google Scholar
5. Nishizawa, M., Menon, V. P., and Martin, C. R., Science (Washington, D. C.), 268, 700, (1995).Google Scholar
6. Shen, W. N., Dunn, B., Moore, C. D., Goorsky, M. S., Radetic, T., and Gronsky, R., Journal of Materials Chemistry, 10, 657, (2000).Google Scholar
7. Xu, L., Zhou, W., Kozlov, M. E., Khayrullin, I. I., Udod, I., Zakhidov, A. A., Baughman, R. H., and Wiley, J. B., Journal of the American Chemical Society, 123, 763, (2001).Google Scholar
8. Jiang, P., Cizeron, J., Bertone, J. F., and Colvin, V. L., Journal of the American Chemical Society, 121, 7957, (1999).Google Scholar
9. Attard, G. S., Bartlett, P. N., B. Coleman, N. R., Elliott, J. M., Owen, J. R., and Wang, J. H., Science (Washington, D. C.), 278, 838, (1997).Google Scholar
10. McKenzie, K. J., Marken, F., Hyde, M., and ComPdon, R. G., New Journal of Chemistry, 26, 625, (2002).Google Scholar
11. Han, Y.J., Kim, J. M., Stucky, G. D., Chemistry of Material., 12, 2068, (2000).Google Scholar
12. Lee, K.B., Lee, S.M., Cheon, J., Advanced Materials. (Weinheim, Germany), 13, 517, (2001).Google Scholar
13. Wang, D.,Zhou, W. L., McCaughy, B. F., Hampsey, J. E., Ji, X., Jiang, Y.B.,Xu, H., Tang, J., Schmehl, R. H., O'Connor, C., Brinker, C. J., and Lu, Y., Advanced Materials (Weinheim, Germany), 15, 130, (2003).Google Scholar