Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-10-04T08:23:53.598Z Has data issue: false hasContentIssue false

Oxygen Permeation Studies of SrCo0.8Fe0.2O3-δ

Published online by Cambridge University Press:  16 February 2011

Y. L. Yang
Affiliation:
Department of Chemistry and Texas Center for SuperconductivityUniversity of Houston, Houston, TX 77204-5641
T. H. Lee
Affiliation:
Department of Chemistry and Texas Center for SuperconductivityUniversity of Houston, Houston, TX 77204-5641
L. Qiu
Affiliation:
Department of Chemistry and Texas Center for SuperconductivityUniversity of Houston, Houston, TX 77204-5641
L. Liu
Affiliation:
Department of Chemistry and Texas Center for SuperconductivityUniversity of Houston, Houston, TX 77204-5641
A. J. Jacobson
Affiliation:
Department of Chemistry and Texas Center for SuperconductivityUniversity of Houston, Houston, TX 77204-5641
Get access

Abstract

Oxygen permeation fluxes through dense SrCo0.80Fe0.20O3-δ discs have been measured in the temperature range of 620-920 °C under various oxygen partial pressure gradients. The permeation results are compared with the previous measurements. Below 800 °C, the apparent activation energy for the overall permeation is 22±4 kcal/mol. The permeation results are discussed in light of the phase diagram of SrCo0.80Fe0.20O3-δ. Based on experiments in which the membrane thickness is varied, we propose that the surface exchange process is the ratelimiting step in the overall permeation reaction. Preliminary catalytic studies of methane partial oxidation in a membrane reactor are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gellings, P.J. and Bouwmeester, H.J.M., Catalysis Today 12, (1992) 1.387 Google Scholar
2. Iwahara, H., in Solid State Ionic Devices, ed. Chowdari, B.V.R. and Radhakrishina, S., World Scientific, Singapore, 1988, p.309.Google Scholar
3. Zaman, J. and Chakma, A., J. Membrane Sci. 92, (1994) 1.Google Scholar
4. Saracco, G. and Specchia, V., Catal. Rev.-Sci. Eng. 36, (1994) 305.Google Scholar
5. Mazanec, T.J., in The Activation of Dioxygen and Homogeneous Catalytic Oxidation, ed. Barton, D.H.R. et al. , Plenum Press, New York, 1993, p.85.Google Scholar
6. Teraoka, Y., Nobunaga, T., Okamoto, K., Miura, N. and Yamazoe, N., Solid State Ionics 48, (1991) 207.Google Scholar
7. Teraoka, Y., Nobunaga, T. and Yamazoe, N., Chem. Lett., (1988) 503.Google Scholar
8. Teraoka, Y., Zhang, H., Furukawa, S. and Yamazoe, N., Chem. Lett., (1985) 1743.Google Scholar
9. Teraoka, Y. et al. , Mat. Res. Bull. 23, (1988) 51.Google Scholar
10. Teraoka, Y. et al. , Chem. Lett., (1981) 1767.Google Scholar
11. Teraoka, Y. et al. , Chem. Lett. (1985) 1367.Google Scholar
12. Kruidhof, H., Bouwmeester, H.J.M., Doom, R.H.E.v., and Burggraaf, A.J., Solid State Ionics 63/65, (1993) 816.Google Scholar
13. Nisancioglu, K. and GUr, T.M., Proc. 3rd Int. Sym. Solid Oxide Fuel Cells, ed. Singhal, S.C. and Iwahara, H., Electrochemical Society, Remington, New Jersey, 1994.Google Scholar
14. Liu, L.-M., Qiu, L., Lee, T. H., Yang, Y. L., and Jacobson, A. J. to be published.Google Scholar
15. Qiu, L., Lee, T. H., Liu, L.-M., Yang, Y. L. and Jacobson, A. J., Solid State Ionics submittedGoogle Scholar
16. Kontoulis, I. and Steele, B.C.H., Solid State Ionics 47, (1991) 317.Google Scholar
17. Rickert, H., Electrochemistry of Solids-an Introduction, Springer, Berlin, 192, p168.Google Scholar
18. Takeda, Y., Kanno, K., Takada, T., Yamamoto, O., Takano, M., Nakayama, N. and Bando, Y., J. Solid State Chem. 63, (1988) 237.Google Scholar