Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:32:41.590Z Has data issue: false hasContentIssue false

Oxygen, Oxidation Stacking Faults, and Related Phenomena in Silicon

Published online by Cambridge University Press:  15 February 2011

S. M. Hu*
Affiliation:
IBM General Technology Division, East Fishkill, Hopewell Junction, NY 12533, USA
Get access

Abstract

Some salient features of the phenomena of oxidation stacking faults (OSF) and oxidation enhanced diffusion(OED) are summarized, and some theories of OSF growth are critiqued. Then a new theory is developed which shows the growth to be reaction controlled, and the retrogrowth to be naturally a regime in the entire OSF growth process. The theory has provided an estimated bound on the activation energy of self-diffusion in silicon. It is shown that the observed power law growth kinetics can be explained quite naturally by a bimolecular annihilation process of the excess self-interstitials. A possible physical model of such an annihilation process is discussed. A number of phenomena related to the nucleation of oxygen precipitates in silicon are reported. Then a model of nucleation is presented which is shown to be consistent with all observed phenomena.In this model, the homogeneous nucleation proceeds not merely via the agglomeration of oxygen atoms, but in combination with small vacancy clusters. Evidence from the OSF and OED phenomena, and the nucleation of oxygen precipitates thus necessitates the dualism of vacancies and interstitials as thermal defects in silicon at high temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sanders, I. R. and Dobson, P. S., Philos. Mag. 20, 881 (1969).Google Scholar
2. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
3. Leroy, B., J. Appl. Phys. 50, 7996 (1979).CrossRefGoogle Scholar
4. Lin, A. M., Dutton, R. W., Antoniadis, D. A. and Tiller, W. A., J. Electrochem.Soc. (to be published).Google Scholar
5. Murarka, S. P., Phys. Rev. B16, 2849 (1977).CrossRefGoogle Scholar
6. Hu, S. M., Appl. Phys. Lett. 27, 165 (1975).CrossRefGoogle Scholar
7. Claeys, C. L., Laes, E. L., Declerck, G. J. and van Overstraeten, R. J., in Semiconductor Silicon 1977, Huff, H. R. and Sirtl, E., eds. (The Electrochemical Society, Princeton, 1977), pp. 773784.Google Scholar
8. Murarka, S. P., J. Appl. Phys. 49, 2513 (1978).CrossRefGoogle Scholar
9. Yang, K. H., Recent News, Electrochem. Soc. Meeting, Toronto, May 11–16, 1975.Google Scholar
10. Hashimoto, H., Shibayama, H., Masaki, H. and Ishikawa, H., J. Electrochem. Soc. 123, 1899 (1976).CrossRefGoogle Scholar
11. Sugita, Y., Shimizu, H., Yoshinaka, A. and Aoshima, T., J. Vac. Sci. Technol. 14, 44 (1977).Google Scholar
12. Claeys, C. L., Declerck, G. J. and van Overstraeten, R. J., Appl. Phys. Lett. 35, 797 (1979).Google Scholar
13. Hu, S. M., Mater. Res. Soc. Meeting, Boston, November 15–17, 1976.Google Scholar
14. Antoniadis, D. A., Gonzalez, A. G. and Dutton, R. W., J. Electrochem. Soc. 125, 813 (1978).Google Scholar
15. Antoniadis, D. A., Lin, A. M. and Dutton, R. W., Appl. Phys. Lett. 33, 1030 (1978).CrossRefGoogle Scholar
16. Shriraki, H., Jpn. J. Appl. Phys. 15, 1 (1976).CrossRefGoogle Scholar
17. Hattori, T., J. Electrochem. Soc., 123, 945 (1976);CrossRefGoogle Scholar
Denki Kagaku, 46, 122 (1979).Google Scholar
18. Nabeta, Y., Uno, T., Kubo, S. and Tsukamoto, H., J. Electrochem. Soc., 123, 1417 (1976).CrossRefGoogle Scholar
19. Hattori, T. and Suzuki, T., Appl. Phys. Lett. 33, 347 (1978).Google Scholar
20. Hokari, Y., Jpn. J. Appl. Phys. 18, 873 (1979);CrossRefGoogle Scholar
16 1899 (1977).Google Scholar
21. Murarka, S. P., J. Appl. Phys. 48, 5020 (1977).Google Scholar
22. Hu, S. M., J. Appl. Phys. 51, 3666 (1980).CrossRefGoogle Scholar
23. Taniguchi, K., Kurosawa, K. and Kashiyagi, M., J. Electrochem. Soc., 127, 2243 (1980).Google Scholar
24. Kato, T., Sugita, Y. and Yoshinaka, A., Jpn. J. Appl. Phys. 11, 1066 (1972).CrossRefGoogle Scholar
25. Francis, R. and Dobson, P. S., J. Appl. Phys. 50, 280 (1979).CrossRefGoogle Scholar
26. Krivanek, O. L. and Maher, D. M., Appl. Phys. Lett. 32, 451 (1978).CrossRefGoogle Scholar
27. Hornstra, J., J. Phys. Chem. Solids, 5, 129 (1958).Google Scholar
28. Kahlweit, M., in Progress in Solid State Chemistry, Reiss, H., ed., (Pergamon, New York, 1965), Vol. 2, P. 134.Google Scholar
29. Buchholz, H., Elektrische und Magnetische Potentialfelder (Springer Verlag, Berlin, 1957), p. 233.CrossRefGoogle Scholar
30. Flynn, C. P., Phys. Rev. A587, 133 (1964);Google Scholar
Point Defects and Diffusion (Clarendon Press, Oxford, 1972), p. 486.Google Scholar
31. Seidman, D. N. and Balluffi, R. W., Philos. Mag. 13, 649 (1966).Google Scholar
32. Kroupa, F., Czech. J. Phys. B10, 284 (1960).CrossRefGoogle Scholar
33. Seeger, A. and Chik, K. P., Phys. Stat. Solidi, 29, 455 (1968).Google Scholar
34. Hu, S. M., in Atomic Diffusion in Semiconductors, Shaw, D., ed., (Plenum, New York, 1973), Chap. 5.Google Scholar
35. Seeger, A. and Frank, W., these proceedings.Google Scholar
36. Goesele, U., these proceedings.Google Scholar
37. Peart, R. F., Phys. Stat. Solidi, 15 K119 (1966).Google Scholar
38. Masters, B. J. and Fairfield, J. M., Appl. Phys. Lett. 8, 280 (1966).CrossRefGoogle Scholar
39. Ghoshtagore, R. N., Phys. Rev. Lett. 16, 890 (1966).CrossRefGoogle Scholar
40. Mayer, H. J., Mehrer, H. and Maier, K., Intl. Conf. on Radiation Effects in Semiconductors Dubrovnick, Yugoslavia 1976.Google Scholar
41. Kalinowski, L. and Sequin, R., Appl. Phys. Lett. 35, 211 (1979).CrossRefGoogle Scholar
42. Ravi, K. V., J. Electrochem. Soc. 121, 1090 (1974).CrossRefGoogle Scholar
43. Shimura, F., Tsuya, T. and Kawamura, T., App. Phys. Lett. 37, 483 (1980).Google Scholar
44. Freeland, P. E., Jackson, K. A., Lowe, C. W. and Patel., J. R., Appl. Phys. Lett. 30, 31 (1977).Google Scholar
45. Osaka, J., Inoue, N. and Wada, K., Appl. Phys. Lett. 36, 288 (1980).CrossRefGoogle Scholar
46. Hu, S. M., Appl. Phys. Lett. 36, 561 (1980).Google Scholar
47. Ohsawa, A., Honda, K., Ohkawa, S. and Ueda, R., Appl. Phys. Lett. 36, 147 (1980).CrossRefGoogle Scholar
48. Fuller, C. S. and Logan, R. A., J. Appl. Phys. 28, 1427 (1957).Google Scholar
49. Kaiser, W., Frisch, H. L. and Reiss, H., Phys. Rev. 112, 1546 (1958).CrossRefGoogle Scholar
50. Cazcarra, V. and Zunino, P., J. Appl. Phys. 51, 4206 (1980).CrossRefGoogle Scholar
51. deKock, A. J. R., Philips Res. Rept. Suppl. No. 1 (1973).Google Scholar
52. deKock, A. J. R., in Semiconductor Silicon 1977, Huff, H. R. and Sirtl., E., ed. (Electrochem. Soc., Princeton, 1977), p. 508.Google Scholar
53. deKock, A. J. R. and van der Wijgert, W. M., J. Crystal Growth, 49, 718 (1980).CrossRefGoogle Scholar
54. Chikawa, J. and Shirai, S., J. Crystal Growth 39, 328 (1977).CrossRefGoogle Scholar
55. Hu, S. M., J. Vac. Sci. Technol. 14, 17 (1977).CrossRefGoogle Scholar
56. Yasuami, S., Harada, J. and Wakamatsu, K., J. Appl. Phys. 50, 6860 (1979).Google Scholar
57. Hu, S. M., J. Appl. Phys. 51, 5945 (1980).Google Scholar
58. For example, the transfer of one carbon atom from a substitutional site in the silicon matrix to a growing silicon carbide precipitate will release one vacancy, and the precipitation of two interstitial oxygen atoms requires the absorption of only a single vacancy to produce an unstrained particle of silica.Google Scholar
See Bullough, R. and Newman, R. C., Rep. Prog. Phys. 33, 101 (1970);CrossRefGoogle Scholar
especially p. 144.Google Scholar