Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T12:02:13.991Z Has data issue: false hasContentIssue false

Oxide Thermoelectrics

Published online by Cambridge University Press:  01 February 2011

David Joseph Singh*
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Div., 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6114, United States, 865-241-3716
Get access

Abstract

Thermoelectricity in oxides, especially NaxCoO2 and related materials, is discussed from the point of view of first principles calculations and Boltzmann transport theory. The electronic structure of this material is exceptional in that it has a combination of very narrow bands and strong hybridization between metal d states and ligand p states. As shown within the framework of conventional Boltzmann transport theory, this leads to high Seebeck coefficients even at metallic carrier densities. This suggests a strategy of searching for other narrow band oxides that can be doped metallic with mobile carriers. Some possible avenues for finding such materials are suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. , Terasaki, Sasago, Y., and Uchinokura, K., Phys. Rev. B 56, R12685 (1997).Google Scholar
2. Fujita, K., Mochida, T., and Nakamura, K., Jpn. J. Appl. Phys. Part 1 40, 4644 (2001).Google Scholar
3. Hebert, S., Lambert, S., Pelloquin, D., and Maignan, A., Phys. Rev. B 64, 17201 (2001).Google Scholar
4. Miyazaki, Y., Onoda, M., Oku, T., Kikuchi, K., Ishii, Y., Ono, Y., Morii, Y., and Kajitani, T., J. Phys. Soc. Jpn. 71, 491 (2002).Google Scholar
5. Ziman, J.M., Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).Google Scholar
6. Singh, D.J., Phys. Rev. B 61, 13397 (2000).Google Scholar
7. Yang, H.B., Pan, Z.H., A.Sekharan, K.P., Sato, T., Souma, S., Takahashi, T., Jin, R., Sales, B.C., Mandrus, D., Fedorov, A.V., Wang, Z., and Ding, H., Phys. Rev. Lett. 95, 146401 (2005).Google Scholar
8. Qian, D., Wray, L., Hsieh, D., Wu, D., Luo, J.L., Wang, N.L., Kuprin, A., Fedorov, A., Cava, R.J., Viciu, L., and Hasan, M.Z., Phys. Rev. Lett. 96, 046407 (2006).Google Scholar
9. Singh, D.J. and Kasinathan, D., Phys. Rev. Lett. 97, 016404 (2006).Google Scholar
10. Madsen, G.K.H. and Singh, D.J., Comp. Phys. Commun. 175, 67 (2006).Google Scholar
11. Singh, D.J. and Kasinathan, D., J. Electronic Materials 36, 736 (2007).Google Scholar
12. Xiang, H.J. and Singh, D.J., Phys. Rev. B 76, 195111 (2007).Google Scholar
13. Wang, Y., Rogado, N.S., Cava, R.J., and Ong, N.P., Nature (London) 423, 425 (2003).Google Scholar
14. Singh, D.J., Rai, R.C., Musfeldt, J.L., Auluck, S., Singh, N., Kalifah, P., McClure, S., and Mandrus, D.G., Chem. Mater. 18, 2696 (2006).Google Scholar
15. Wilson-Short, G.B., Singh, D.J., Fornari, M., and Suewattana, M., Phys. Rev. B 75, 035121 (2007).Google Scholar
16. Klein, Y., Hebert, S., Pelloquin, D., Hardy, V., and Maignan, A., Phys. Rev. B 73, 165121 (2006).Google Scholar
17. Bertaut, E.F. and Delorme, C., Acad. Sci. Paris, C.R. 238, 1829 (1954).Google Scholar
18. Bertaut, E.F. and Dulac, J., J. Phys. Chem. Solids 21, 118 (1961).Google Scholar
19. Shibasaki, S., Kobayashi, W., and Terasaki, I., Phys. Rev. B 74, 235110 (2006).Google Scholar
20. Singh, D.J., Phys. Rev. B 76, 085110 (2007).Google Scholar