Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T04:09:17.816Z Has data issue: false hasContentIssue false

Oxidation of Semiconducting Iron Disilicide (β-FeSi2)

Published online by Cambridge University Press:  25 February 2011

Nils Lundberg
Affiliation:
Royal Institue of Technology, Solid State Electronics, KTH-Electrum, Box 1298, 164 28, Kista, Sweden
U. Erlesand
Affiliation:
Royal Institue of Technology, Solid State Electronics, KTH-Electrum, Box 1298, 164 28, Kista, Sweden
M. Östling
Affiliation:
Royal Institue of Technology, Solid State Electronics, KTH-Electrum, Box 1298, 164 28, Kista, Sweden
Get access

Abstract

Iron disilicide (β-FeSi2) has gained significant importance in recent years because of its semiconducting properties. The bandgap is reported to be direct with an energy of 0.85–0.89 eV, thus making the suicide a potential candidate for optical communications and detector applications. Compatibility with standard VLSI processing might involve a suicide thermal oxidation step. This work concerns the kinetics of both dry and wet oxidations of β-FeSi2. The oxide quality was characterized with respect to the electrical breakdown voltage. The results indicate an oxidation temperature dependence of the oxide quality and that dry oxidation yield higher breakdown voltage than wet oxidation. Structural and semiconducting suicide properties were investigated before and after oxidation. High energy implantation of xenon was used in a marker experiment to investigate a possible change of oxidation mechanism between dry and wet oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bost, M. C. and Mahan, J. E., J. Vac. Sci. Technol. B4, 1336 (1986)CrossRefGoogle Scholar
[2] Ware, R. M. and Mcneill, D. J., Proc. IEEE. 111, 178 (1964)Google Scholar
[3] Kojima, T., phys. stat. sol. (a) 111, 233 (1989)CrossRefGoogle Scholar
[4] Nicolet, M. -A. and Lau, S. S., in VLSI Electronics Microstructure Science, vol. 6, Einspruch, N. G. and Larrabee, G. B., eds. (Academic Press, New York, 1983) p. 329 Google Scholar
[5] Nishida, I. and Sakata, T., J. Phys. Chem. Solids 39, 499 (1978)CrossRefGoogle Scholar
[6] Petersson, C. S., Reimer, J. A., Brodsky, M. H., Campbell, D. R., d'Heurle, F. M., Karlsson, B., and Tove, P. A., J. Appl. Phys. 53, 3342 (1982)CrossRefGoogle Scholar
[7] Bartur, M. and Nicolet, M. -A., J. Electrochem. Soc. 131, 178 (1984)Google Scholar
[8] Jiang, H., Petersson, C. S., and Nicolet, M. -A., Thin Solid Films 140, 115 (1986)CrossRefGoogle Scholar
[9] d'Heurle, F. M., Cros, A., Irene, E. A., and Frampton, R., Philos. Mag. B55, 291 (1989)Google Scholar
[10] Birkholz, U. and Schelm, J., phys. status, sol. 34, K177 (1969)Google Scholar
[11] Bost, M. C. and Mahan, J. E., J. Appl. Phys. 58, 2696 (1985)CrossRefGoogle Scholar
[12] Bost, M. C. and Mahan, J. E., J. Appl. Phys. 64, 2034 (1988)CrossRefGoogle Scholar
[13] Dimitriadis, C. A., Werner, J. H., Logothtidis, S., Stutzmann, M., Weber, J., and Nesper, R., J. Appl. Phys. 68, 1726 (1990)CrossRefGoogle Scholar
[14] Lefki, K., Muret, P., Cherief, N. and Cinti, R. C., J. Appl. Phys. 69, 352 (1991)CrossRefGoogle Scholar
[15] Cheng, H. C., Yew, T. R., and Chen, L. J., Appl. Phys. Lett. 47, 128 (1985)CrossRefGoogle Scholar
[16] Mahan, J. E., Geib, K. M., Robinson, G. Y., Long, R. G., Xing, Y., Bai, G., Nicolet, M. -A., and Nathan, M., Appl. Phys. Lett. 56, 2126 (1990)CrossRefGoogle Scholar
[17] Cherief, N., D'Anterroches, C., Cinti, R. C., Ngyuen Tan, T. A., and Derrien, J., Appl. Phys. Lett. 55, 1671 (1989)CrossRefGoogle Scholar
[18] Rizzi, A., Moritz, H. and Lüth, H., J. Vac. Sci. Technol. A9, 912 (1991)CrossRefGoogle Scholar
[19] Alvarez, J., Hinarejos, J. J., Michel, E. G., Gallego, J. M., Vazquez de Parga, A. L., dela Figuera, J., Ocal, C., and Miranda, R., Appl. Phys. Lett. 59, 99 (1991)CrossRefGoogle Scholar
[20] Radermacher, K., Mantl, S., Dieker, Ch., and Luth, H., Appl. Phys. Lett. 59, 2145, (1991)CrossRefGoogle Scholar
[21] d'Heurle, F. M. in The properties ofSiO2 , Helms, C. R., ed., Plenum Press, New York (1989), p. 85 Google Scholar
[22] Stolt, L., Thomas, O. and d'Heurle, F. M., J. Appl. Phys. 68, 5133.(1990)CrossRefGoogle Scholar
[23] Stolt, L., Thomas, O. and d'Heurle, F. M., Proc. of 14th Nordic Semiconductor Meeting, Hansen, O., ed., (Aarhus, Denmark, 1990), p. 272 Google Scholar
[24] Jiang, H., Petersson, C. S. and d'Heurle, F. M., unpublished results, (1985)Google Scholar
[25] Zhang, S. -L., Ghez, R., and d'Heurle, F. M., J. Electrochem. Soc. 137, 2, (1990)Google Scholar
[26] Göltz, G., Ferrieu, F. and Ottavi, L., Le Vide-Les Couches Mines 42–236, 183 (1987)Google Scholar