Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:39:02.600Z Has data issue: false hasContentIssue false

Oxidation Of AI-Cu-Fe Quasicrystals

Published online by Cambridge University Press:  10 February 2011

B. I. Wehner
Affiliation:
Dept. Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
U. Köster
Affiliation:
Dept. Chem. Eng., University of Dortmund, D-44221 Dortmund, Germany
Get access

Abstract

The oxidation behavior of i-A163Cu25Fe12 at 800°C in air was investigated by means of TGA, XRD, SEM and TEM. In the beginning a homogeneous oxide layer is formed by the subsequent growth of metastable γ-Al2O3 and Θ-Al2O3. Nucleation of the thermodynamical stable α-Al2O3 occurs at the interface oxide/quasicrystal. The following growth of α-Al2O3 through the oxide layer leads to the formation of oxide nodules. The high growth rate of the α-Al2O3 can be explained by the incorporation of copper ions. The oxidation resistance of the quasicrystal is insufficient at high temperatures, because no protective oxide layer is formed. The high temperature oxidation behavior of Al-Cu-Fe quasicrystal and the aluminides β-FeAl and β-NiAl is compared regarding the oxidation rate, the oxide phases and the concentration changes in the material due to selective oxidation of aluminum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dubois, J. M., Kang, S. -S., Massiani, Y. J., Non-Cryst. Solids 153&154, 443 (1993).Google Scholar
2. Dubois, J. M., Kang, S. S., Stebut, J. von, J. Mat. Sci. Lett. 10, 537 (1991).Google Scholar
3. Kang, S. S., Dubois, J. M., Stebut, J. von, J. Mater. Res. 8, 2471 (1993).Google Scholar
4. Liebertz, H., PhD thesis, University of Dortmund, (1997).Google Scholar
7. Beauclair, N., Air & Cosmos, Aviation International N° 1619 Vendredi 27 Juin 1997.Google Scholar
6. Köster, U., Liebertz, H., Liu, W., Mater. Sci. Eng. A181/182, 777 (1994).Google Scholar
7. Wehner, B. I., Köster, U., Proc. ICQ6. Eds.: Takeuchi, S.; Fujiwara, T., World Scientific: Singapore (1998), pp. 773776.Google Scholar
8. Joulaud, J. L., Bergman, C., Bemardini, J., Gas, P., Dubois, J. M., Calvayrac, Y., Gratias, D., J. Phys. IV, Suppl. J. Phys. III 6, C2259 (1996).Google Scholar
9. Th. Zumkley, Mehrer, H., Freitag, K., Wollgarten, M., Tamura, N., Urban, K., Phys. Rev. B 54, R6815 (1996).Google Scholar
10. Mehrer, H., Galler, R., Diffusion in Icosahedral Al-Pd-Mn Quasicrystals (this volume).Google Scholar
11. Wehner, B. I., PhD thesis, University of Dortmund, 1998.Google Scholar
12. Rommerskirchen, I., Eltester, B., Grabke, H. J., Materials and Corrosion 47, 646 (1996).Google Scholar
13. Brumm, M. W., Grabke, H. J., Corrosion Science 33, 1677 (1992).Google Scholar
14. Shankar, S., L.L.Seigle, Metall. Trans. A 9A, 1467 (1978).Google Scholar
15. Brumm, M. W., Grabke, H. J., Corrosion Science 34, 547 (1993).Google Scholar