Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-06T04:00:32.605Z Has data issue: false hasContentIssue false

Oxidation and Nitridation by Pulsed Laser Irradiation of Solids Immersed in Liquids

Published online by Cambridge University Press:  28 February 2011

S. Roorda
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
A. Polman
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
S. B. Ogale
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
F. W. Saris
Affiliation:
FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

Nitridation and oxidation of titanium is achieved by pulsed laser irradiation of Ti immersed in liquid ammonia or water. Rutherford Backscattering Spectrometry shows that large amounts of nitrogen and oxygen can be incorporated in the metal surface to a depth of several 1000 Å. X-ray diffraction shows evidence of compound formation. Scanning Electron Microscopy reveals that initial surface texture is smoothed, and that stress induced cracks and holes may appear. Irradiation of Fe and Si immersed in various liquids shows that modification depends on which combination of solid and liquid is used. Influence of processing parameters such as laser-energy density and number of laser pulses on compound formation has been investigated. The process is viewed as a reactive solute incorporation in the laser melted surface layer, followed by compound formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Laser Annealing of Semiconductors, edited by Poate, J. M. and Mayer, J. W. (Academic Press, New York, 1982).Google Scholar
2 Mayo, M., Solid State Tech. 29, 141 (1986).Google Scholar
3 Kitahama, K., Hirata, K., Nakamatsu, H., Kawai, S., Fujimori, N., Imai, T., Yoshino, H. and Doi, A., Appl. Phys. Lett. 49, 634 (1986).Google Scholar
4 Houle, F. A., Laser Assisted Deposition, Etching and Doping, Allen, Susan D., editor, Proc SPIE (Int. Soc. Opt. Eng.) 459. 110 (1984).Google Scholar
5 Fogarassy, E., Young, R.T., Wood, R.F. and Christie, W.H., Appl.Phys.Lett. 33, 338 (1978).Google Scholar
6 Bentini, G. G., Bianconi, M., Correra, L., Lotti, R. and Summonte, C., to be publ. in Proc. 7th E.C. Photovolt. Sol. En. Conf. 1986, Sevilla.Google Scholar
7 Allen, S.D., J. Appl. Phys. 52, 6501 (1981).CrossRefGoogle Scholar
8 Merlin, R. and Perry, T. A., Appl. Phys. Lett. 45,852 (1984).Google Scholar
9 Richter, H., Orlowski, T. E., Kelly, M. and Margaritondo, G., J. Appl. Phys. 56, 2351 (1984).Google Scholar
10 Sugii, T., Ito, T., Ishikawa, H., Appl. Phys. Lett. 45, 966 (1984).CrossRefGoogle Scholar
11. Ogale, S.B., Polman, A., Quentin, F.O.P., Roorda, S. and Saris, F.W., to be published in Appl.Phys.Lett.Google Scholar
12 Chu, W.K., Mayer, J.W. and Nicolet, M.A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
13 Doolittle, L.R., Nucl. Instr. and Meth. B9, 344 (1984).Google Scholar
14 Doolittle, L.R., Nucl. Instr. and Meth. B15, 227 (1986).Google Scholar
15 Schultz, J.M., Diffraction For The Materials Scientists, (Prentice-Hall, Englewood Cliffs, N. J., 1982).Google Scholar
16 Wang, Z. L., Westendorp, J. F. M. and Saris, F. W., Nucl. Instr. and Meth. 211, 193 (1983).CrossRefGoogle Scholar