Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T11:59:55.707Z Has data issue: false hasContentIssue false

Overview of Various Strategies and Promising New Bulk Materials for Potential Thermoelectric Applications

Published online by Cambridge University Press:  21 March 2011

Terry M. Tritt*
Affiliation:
Department of Physics &, Astronomy Clemson University, Clemson, SC, USA
Get access

Abstract

Recently, there has been a renewed interest in thermoelectric material research. There are a number of different systems of potential thermoelectric (TE) materials that are under investigation by various research groups. Some of these research efforts focus on minimizing lattice thermal conductivity while other efforts focus on materials that exhibit large power factors. An overview of some of the requirements and strategies for the investigation and optimization of a new system of materials for potential thermoelectric applications will be discussed. Some of the newer concepts such as low-dimensional systems and Slack's phononglass, electron-crystal concept will be discussed. Current strategies for minimizing lattice thermal conductivity and also minimum requirements for thermopower will be presented. The emphasis of this paper will be to identify some of the more recent promising bulk materials and discuss the challenges and issues related to each. This paper is targeted more at “newcomers” to the field and does not discuss some of the very interesting results that are being reported in the thin film and superlattice materials. Some of the bulk materials which will be discussed include complex chalcogenides (e.g.CsBi4Te6 and pentatellurides such as the Zr1−XHfXTe5 system), half-Heusler alloys (e.g. TiNiSn1−XSbX), ceramic oxides (NaCo4O2), skutterudites (e.g. YbXCo4−XSb12 or EuXCo4−XSb12) and clathrates (e.g. Sr8Ga16Ge30). Each of these systems is distinctly different yet each exhibits some prospect as a potential thermoelectric material. Results will be presented and discussed on each system of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1“Recent Trends in Thermoelectric Materials Research”, Semiconductors and Semimetals, Volumes 69, 70 and 71, Volumes edited by Tritt, Terry M., Treatise, editors, Willardson, R. K. and Weber, E., Academic Press, New York, (2000)Google Scholar
2. Proceedings of the 1997 Materials Research Society Volume 478, Warrendale, PA, Thermoelectric Materials -New Directions and Approaches Edited by: Tritt, Terry M. et al. .Google Scholar
3. Proceedings of 1998 Materials Research Society Volume 545 and 626, Warrendale, PA, New Materials for Small Scale Thermoelectric Refrigeration and Power Generation Applications, Edited by: Tritt, Terry M. et al. .Google Scholar
4 Nolas, G. S., Sharp, J. and Goldsmid, H. J., Thermoelectrics: Basic Principles and New Materials Developments, Springer New York (2000)Google Scholar
5. Singh, D., these proceedingsGoogle Scholar
6. Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch London 1957 Google Scholar
7 Tritt, Terry M., Science, 272, 1276 (1996) and Science, 283, 804 (1999)Google Scholar
8 DiSalvo, F. J., Science, 285, 70 (1999)Google Scholar
9 Slack, G. A., in Solid State Physics, 34, 1 (1979), ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York.Google Scholar
10. Slack, G. A., New Materials and Performance Limits for Thermoelectric Cooling, p 407, CRC Handbook on Thermoelectrics, edited by Rowe, D. M., CRC Press Boca Raton FL (1995)Google Scholar
11. Bhattacharya, S. et al. . these proceedingsGoogle Scholar
12. Savvides, N. and Goldsmid, H.J., J. Physics. C: Solid St. Phys., 13,(1980) p. 46574670.Google Scholar
13. Rowe, D.M. and Shukla, V. S., J. Appl. Phys. 52 (12), p. 74217426.Google Scholar
14. Bhandari, C.M. and Rowe, D.M., J. Phys. D: Appl. Phys., 16 (1983) p. L75–L77.Google Scholar
15. Goldsmid, H.J., Penn, A.W., Phys. Lett, 27A (1968), p. 523524.Google Scholar
16 Mahan, G., J. Appl. Phys. 65,1578 (1989)Google Scholar
17 Mahan, G., Good Thermoelectrics, in Solid State Physics, 51, 81 (1998), ed. by F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York.Google Scholar
18 Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).Google Scholar
19 Nolas, G.S., Slack, G.A., Morelli, D.T., Tritt, T.M. and Ehrlich, A.C., J. Appl. Phys. 79, 4002 (1996).Google Scholar
20 Nolas, G. S., Cohn, J. S., Slack, G. A., and Schuman, S. B., Appl. Phys. Lett, 73, 178 (1998)Google Scholar
21 Min, Gao and Rowe, D. M., Appl. Phys Lett., 77, 860 (2000)Google Scholar
22 Goldsmid, H. J., Electronic Refrigeration, Pion Limited Publishing, London, (1986).Google Scholar
23 Sloan, J., Superconductor Industry, Fall 1996, p32, (1996)Google Scholar
24 Allen, Andrew W., Detector Handbook, Laser Focus World, March issue 1997 Google Scholar
25 Hicks, L. D. and Dresselhaus, M. S., Phys. Rev. B. 47, 12727 (1993).Google Scholar
26 Chung, Duck Young et al. , Science, 287, 1024 (2000)Google Scholar
27 Yim, W. M. and Rosi, F. D., Solid-State Electronics, 15, 1121–40, (1972)Google Scholar
28 Zawilski, B.M., Littleton, R.T. IV and Terry T. Tritt Appl. Phys. Lett,Google Scholar
29 Terasaki, I., Sasago, Y. and Uchinokura, K. Phys. Rev. B, 56, R82685 (1997)Google Scholar
30 Kawata, T., Iguci, Y., Itoh, T., Takahata, K. and Terasaki, I., Phys. Rev. B, 60, 10584 (1999)Google Scholar
31 Takahata, K., Iguci, Y., Tanaka, D., Itoh, T., and Terasaki, I. Phys. Rev. B, 61, 12551 (2000)Google Scholar
32 Poon, S. J., Electronic and Thermoelectric Properties of Half-Heusler Alloys, in Vol. 70 (see ref. 1 above), edited by Tritt, Terry M., Chapter 2, pp 3776. (and references therein)Google Scholar
33 Aliev, F. G. et al. , Z.Phys. B 75 167. (1989)Google Scholar
34 Aliev, F. G. et al. , Z. Phys. B 80 353 (1990)Google Scholar
35 Ogut, S. and Rabe, K. M., Phys. Rev. B 51 10443. (1995)Google Scholar
36 Uher, C. et al. , Phys. Rev. B 59, No.13 (1999) pp.86158621 Google Scholar
37 Hohl, H., et al. , J.Phys.:Condens, Matter Vol.11 No. 7, pp.12761277(1999).Google Scholar
38 Browning, V. M. et al. , 1998 MRS Symposium Proceedings, Vol. 545, p 403, (see ref. 3 above)Google Scholar
39 Uher, C. et al. , 1998 MRS Symposium Proceedings., Vol. 545, p 247, (see ref. 3 above)Google Scholar
40 Mastronardi, K. et al. , Appl. Phys. Lett, 74, 1415 (1999)Google Scholar
41 Shen, Q., Chen, L., Goto, T., Hirai, T., Yang, J., Meissner, G. P. and Uher, C., Appl. Phys. Lett, 79, 4165, 2002 Google Scholar
42. Sharp, J.W., Poon, S.J. and Goldsmid, H.J., Physica Status Solidi (a), 187, 507 (2001).Google Scholar
43 Tritt, Terry M. et al. Invited Plenary talk at ICT-2000 p.516, Babrow Press, edited by Rowe, D. M. (August 2000)Google Scholar
44 Nolas, G.S., Morelli, D.T. and Tritt, T.M., Annu. Rev. Mater. Sci. 29, 89 (1999), and references therein.Google Scholar
45 Uher, C., Skutterudites: Prospective Novel Thermoelectrics, in Vol. 69 see reference (1) above edited by Terry M. Tritt, Volume 69, Chapter 5, pp 139-254.Google Scholar
46 Nolas, G.S. et al. , J. Appl. Phys. 79, 4002 (1998)Google Scholar
47 Evers, C.B.H., Jeitschko, W., Boonk, L., Braun, D.J., Ebel, T. and Scholz, U.D., J. Alloys Comp. 224, 184 (1995), and references therein..Google Scholar
48 Chakoumakos, B.C., Sales, B.C., Mandrus, D. and Keppens, V., Acta. Cryst. B55, 341, (1999), and references therein.Google Scholar
49 Sales, Brian. C., Mandrus, David G., Chakoumakos, Brian. C.Use of Atomic Displacement Parameters in Thermoelectric Materials Research” in Volume 70 (see ref. 1 above), edited by Tritt, T.M. (Academic Press, San Diego, 2000) Chapter 1, pp. 136,Google Scholar
50 Nolas, G.S., Cohn, J.L. and Slack, G.A., Phys Rev B 58, 164 (1998).Google Scholar
51 Nolas, G. S., Kaeser, M., Littleton, R.T. IV, and Tritt, T. M., Appl. Phys. Lett., 77, 1855 (2000)Google Scholar
52 Dilley, N. R., Bauer, E. D, Maple, M. B. and Sales, B. C., Jour. Appl. Phys., 88, 1948, (2000) and references therein on the Yb based skutterudites.Google Scholar
53 Lamberton, G. A. Jr., Bhattacharya, S., Littleton, R. T. IV, Kaeser, M. A., Tedstrom, R. H., Tritt, T. M., Yang, J. and Nolas, G. S., Appl. Phys. Lett., 80, 598 (2002)Google Scholar
54 Nolas, G.S., Slack, G.A. and Schujman, S.B., “Semiconducting Clathrates: A Phonon Glass Electron Crystal Material with Potential for Thermoelectric Applications” in Volume 69, see reference (1) above edited by Tritt, Terry M., (Academic Press, San Diego, 2000) Chapter 6, pp 255-300 and references therein.Google Scholar
55 Nolas, George S. and Slack, Glen A., American Scientist, 89, 136 (2001)Google Scholar
56. Kasper, J.S., Hagenmuller, P., Pouchard, M. and Cros, C., Science 150, 1713 (1965).Google Scholar
57. Cros, C., Pouchard, M. and Hagenmuller, P., J. Solid State Chem. 2, 5470 (1970).Google Scholar
58. Jeffrey, G. A. in Inclusion Compounds; Eds. Atwood, J. L, Davies, J. E. D., and MacNicol, D. D., Academic Press, 1984; Vol. 1, pp 135190.Google Scholar
59. See for example Yamanaka, S., Enishi, E., Fukluoka, H. and Yasukawa, M., Phys. Rev. Inorg. Chem. 39, 56 (2000).and references thereinGoogle Scholar
60. Bryan, J.D., Srdanov, V. I., Stucky, G. and Schmidt, D., Phys. Rev. B 60, 3064 (1999).Google Scholar
61. Adams, G.B, O'Keeffe, M., Demkov, A.A., Sankey, O.F. and Huang, Y.-M., Physical Review B 49, 8048 (1994).Google Scholar
62. Nolas, G. S., Cohn, J. L., Slack, G. A. and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).Google Scholar
63. Keppens, V., Sales, B.C., Mandrus, D., Chakoumakos, B.C. and Laermans, C., Phil. Mag. Lett. 80, 807 (2000).Google Scholar
64. Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H. and Slack, G.A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
65. Nolas, G.S., Weakley, T.J.R. and Cohn, J. L., Chem. Mater. 11, 2470 (1999).Google Scholar
66. Kawaji, H., Horie, H., Yamanaka, S. and Ishikawa, M., Phys. Rev. Lett. 74, 1427 (1995).Google Scholar
67. Yamanaka, S., Enishi, E., Fukluoka, H. and Yasukawa, M., Phys. Rev. Inorg. Chem. 39, 56 (2000).Google Scholar
68. Blake, N.P., Mollnitz, L., Kresse, G. and Metiu, H., J. Chem. Phys. 111, 333 (1999).Google Scholar
69. Cohn, J.L., Nolas, G.S., Fessatidis, V., Metcalf, T.H. and Slack, G.A., Phys. Rev. Lett. 82, 779 (1999).Google Scholar
70 Nolas, G.S., Weakley, T.J.R. and Cohn, J. L., Chem. Mater. 11, 2470 (1999).Google Scholar
71. Sales, B.C., Chakoumakos, B.C., Jin, R., Thompson, J.R. and Mandrus, D., Phys. Rev. B 63, 245113 (2001).Google Scholar
72. Dong, J. and Sankey, O. F., J. Phys. Condens. Matter. 11, 6129 (1999).Google Scholar
73. Nolas, G.S. and Kendziora, C.A., Phys. Rev. B 62, 7157 (2000).Google Scholar
74. Dong, J., Sankey, O.F. and Myles, C.W., Phys. Rev. Lett. 86, 2361 (2001).Google Scholar