Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T18:01:59.097Z Has data issue: false hasContentIssue false

The Orthorhombic Phase of CaSiO3 Perovskite

Published online by Cambridge University Press:  01 February 2011

Blanka Magyari-Köpe
Affiliation:
Theory of Materials, Physics Department, Royal Institute of Technology, Stockholm Center for Physics, Astronomy and Biotechnology, SE-106 91, Stockholm, Sweden
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.Box 49, Hungary
Göran Grimvall
Affiliation:
Theory of Materials, Physics Department, Royal Institute of Technology, Stockholm Center for Physics, Astronomy and Biotechnology, SE-106 91, Stockholm, Sweden
Börje Johansson
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-100 44, Stockholm, Sweden
János Kollár
Affiliation:
Research Institute for Solid State Physics and Optics, H-1525 Budapest, P.O.Box 49, Hungary
Get access

Abstract

Ab initio total energy calculations, combined with the global parametrization method of perovskite structures, are used to investigate the stability of cubic CaSiO3 against octahedral rotations. We propose an equilibrium crystal structure of orthorhombic Pbnm symmetry. The larger compressibility of the SiO6 octahedra relative to the CaO12 polyhedra is reflected in gradual reduction of the orthorhombic distortion with hydrostatic pressure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stixrude, L., Rev. Mineral. Geochem. 42, 319 (2001).Google Scholar
2. Wentzcovitch, R. M., Ross, N. L., and Price, G. D., Phys. Earth. Planet. Inter. 90, 101 (1995).Google Scholar
3. Stixrude, L., Cohen, R. E., Yu, R., and Krakauer, H., Amer. Miner. 81, 1293 (1996).Google Scholar
4. Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., Wu, Y., and Bassett, W. A., J. Geophys. Res. 94, 17889 (1989).Google Scholar
5. Wang, Y., Weidner, D. J., and Guyot, F., J. Geophys. Res. 101, 661 (1996).Google Scholar
6. Shim, S. H. and Dufy, T. S., J. Geophys. Res. 105, B11, 25955 (2000).Google Scholar
7. Warren, M. C., Ackland, G. J., Karki, B. B., and Clark, S. J., Mineral. Mag. 62, 585 (1998).Google Scholar
8. Chizmeshya, A. V. G., Wolf, G. H., and McMillan, P. F., Geophys. Res. Lett. 23, 2725 (1996).Google Scholar
9. Jeanloz, R., Lee, K., and Shim, S. H. MRS Spring Meeting, Session D2, Invited talk, (2002).Google Scholar
10. Parlinski, K. and Kawazoe, Y., Eur. Phys. J. B. 16, 49 (2000).Google Scholar
11. Magyari-Köpe, B., Vitos, L., Grimvall, G., Johansson, B., and Kollár, J., Phys. Rev. B, in press (2002).Google Scholar
12. Magyari-Köpe, B., Vitos, L., Johansson, B., and J. Kollár, Geophys, J.. Res., in press (2002).Google Scholar
13. Thomas, N. W., Acta Cryst. B 52, 16 (1996).Google Scholar
14. Thomas, N. W., Acta Cryst. B 54, 585 (1998).Google Scholar
15. Vitos, L., Phys. Rev. B 64, 014107 (2001).Google Scholar
16. Vitos, L., Skriver, H. L., Johansson, B., and Kollár, J., Comp. Mat. Sci., 18, 24 (2000).Google Scholar
17. Andersen, O. K., Jepsen, O., and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O. K., and Mookerjee, A. (World Scientific Publishing Co., Singapore, 1994) p. 63; O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000).Google Scholar
18. Magyari-Köpe, B., Vitos, L., Johansson, B. and Kollár, J., Acta Cryst. B 57, 491 (2001)Google Scholar
19. Hohenberg, P. and Kohn, W., Phys. Rev. 136B 864 (1964).Google Scholar
20. Kollár, J., Vitos, L., and Skriver, H. L., in Electronic Structure and Physical Properties of Solids: the uses of the LMTO method, edited by Dreyssé, H. (Lectures Notes in Physics, Springer-Verlag, Berlin, 2000), p. 85.Google Scholar
21. Perdew, J. and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
22. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett. 45, 566 (1980).Google Scholar
23. Ross, N. L., Phys. Chem. Miner. 25, 597 (1998).Google Scholar
24. Kennedy, B. J., Howard, C. J., Chakoumakos, B. C. Phys. Rev. B 59, 4023 (1999). J. Phys.: Condens. Matter 11, 1479 (1999).Google Scholar