Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T12:05:09.034Z Has data issue: false hasContentIssue false

Orthorhombic Martensite, Intermetallic Precipitates and Retained Austenite in Ti-Rich Ti(Ni+Cu) Sputtered thin Films

Published online by Cambridge University Press:  25 February 2011

L. Chang
Affiliation:
Department of Metallurgy, Mechanics and Materials Science, Michigan State University, East Lansing, MI 48824
D. S. Grummon
Affiliation:
Department of Metallurgy, Mechanics and Materials Science, Michigan State University, East Lansing, MI 48824
Get access

Abstract

Periodic multilayered titanium-rich Ni-Ti thin films were prepared by magnetron sputtering from alternating Ni45Ti50Cu5 alloy and pure titanium targets, with an alloy-layerfl'i-layer thickness ratio of 9:1. The microstructure, martensite transformation behavior, and precipitate and defect structures were studied in films which had been annealed at 923K for one hour and furnace cooled at <20 K/min. Energy dispersive X-ray fluorescence measurements showed that the resulting films had a hyperstoichiometric titanium content of approximately 51 atomic percent. Ti2Ni precipitates were found in the annealed structures which were oriented with [1 1 0 ]Ti2Ni parallel to [110]B2 and (001)Ti2Ni parallel within +/− 10 to (001)B2. Differential scanning calorimetry (DSC) revealed an unusually low transformation enthalpy for the martensite reaction in the film (9.1 J/g as opposed to 20.7 J/g for the alloy sputtering target), and a significant fraction of residual B2 austenite was found at temperatures well below the nominal Mf. The martensite transformation was found to occur in two steps involving, on cooling, the initial formation of an orthorhombic martensite prior to transformation to the monoclinic martensite phase at low temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Otsuka, K. and Shimizu, K., Int. Met. Rev. 31, p. 93 (1986).CrossRefGoogle Scholar
2. Goldstein, D., Naval Surface Warfare Center Report NSWC TR 89-110 (April 1989).Google Scholar
3. Walles, B., Chang, L. and Grunmon, D. S., Mat. Res. Soc. Proc. Symp. M (Dec. 1991).Google Scholar
4. Walker, J. A. and Gabriel, J.. Proc. 5th Int. Conf. on Solid State Sensors and Actuators (ext. abstr. B8), June 1989, Montreaux, Switzerland, p. 123 (1989).Google Scholar
5. Minemura, T., Andoh, H., Nagai, M., Watanabe, R., Shimizu, S. and Ikuta, I., J. Mat. Sci. L. 6, p1267 (1987).Google Scholar
6. Busch, J. D., Johnson, A.D. Hodgson, D.E., Lee, C.H. Stevenson, D.A., ICOMAT 1989.Google Scholar
7. Busch, J. D. and Johnson, A.D, J. Appl. Phys. 68 (12), p.6224 (1990).Google Scholar
8. Johnson, A. D., J. Micromech. Microeng. 1. p. 34 (1991).Google Scholar
9. Busch, J. D., Berkson, M.H., Johnson, A.D., Proc. MRS Symp B, Anaheim, CA.(1991).Google Scholar
10. Kuribayashi, K., Int. J. Robotics Res. 4, p. 47 (1986).Google Scholar
11. Grumnon, D. S., Nam, S. and Chang, L., Mat. Res. Soc. Proc. Symp M (Dec. 1991).Google Scholar
12. Bricknell, R. H., Melton, K. N. and Mercier, O., Met. Trans. 10A, p. 693 (1979).Google Scholar
13. Bricknell, R. H. and Melton, K. N., Met. Trans. 11A. p. 1541 (1980).Google Scholar
14. Wu, S. K. and Wayman, C. M., Mat. Sci. Engr. 96, p. 295 (1987).Google Scholar
15. Tsuji, K. and Nomura, K., Scripta Met. 24, p. 2037 (1990).Google Scholar
16. Tadaki, T. and Wayman, C. M., Metallography 15, p. 247 (1982).CrossRefGoogle Scholar
17. Chang, L. and Grummon, D. S., Scripta Met. 25, pp. 20792084 (1991).CrossRefGoogle Scholar
18. Chang, L., Hu-Simpson, C., Grusumon, D. S., Pratt, W. and Loloee, R., MRS Proc. 187, p. 137 (1990).Google Scholar
19. Neviu, M. V., Trans. AIME 218, p. 327 (1960).Google Scholar
20. Miyazaki, S., Otsuka, K. and Wayman, C. M., Acta Metall 37, p. 1873 (1989).Google Scholar
21. Nishida, M., Wayman, C. M. and Horna, T., Met. Trans. 17A, p. 1505 (1986).CrossRefGoogle Scholar
22. Gupta, S. P., Johnson, K. A. A. and Mukherjee, K., Mat. Sci. Engr. 11, p. 283 (1973).CrossRefGoogle Scholar
23. Koskimaki, D., Marcinkowski, M. J. and Sastri, A. S., Trans AIME 245, p1883 (1969).Google Scholar