Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:30:07.023Z Has data issue: false hasContentIssue false

Origins of Discrepancies Between Kinetic Rate Law Theory and Experiments in the Na2O-B2O3-SiO2 System

Published online by Cambridge University Press:  21 March 2011

B. P. McGrail
Affiliation:
Applied Geology and Geochemistry Department, Pacific Northwest National Laboratory, Richland, WA 99352, [email protected]
J. P. Icenhower
Affiliation:
Applied Geology and Geochemistry Department, Pacific Northwest National Laboratory, Richland, WA 99352, [email protected]
E. A. Rodriguez
Affiliation:
Applied Geology and Geochemistry Department, Pacific Northwest National Laboratory, Richland, WA 99352, [email protected]
Get access

Abstract

Discrepancies between classical kinetic rate law theory and experiment were quantitatively assessed and found to correlate with macromolecular amorphous separation in the sodium borosilicate glass system. A quantitative reinterpretation of static corrosion data and new SPFT data shows that a recently advanced protective surface layer theory fails to describe the observed dissolution behavior of simple and complex silicate glasses under carefully controlled experimental conditions. The hypothesis is shown to be self-inconsistent in contrast with a phase separation model that is in quantitative agreement with experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Aagaard, P. and Helgeson, H.C., Am. J. Sci. 282, 237285 (1982).Google Scholar
2. Grambow, B.E., Mat. Res. Soc. Symp. Proc. 44, 1527 (1985).Google Scholar
3. Lasaga, A.C., in Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy, 31, edited by White, A.F. and Brantley, S.L., (Mineralogical Society of America, Washington D. C., 1995), pp. 2386.Google Scholar
4. Strachan, D.M., Bourcier, W.L., and McGrail, B.P., Radioactive Waste Management and Environmental Restoration 19, 129145 (1994).Google Scholar
5. McGrail, B.P., Bacon, D.H., Icenhower, J.P., Mann, F.M., Puigh, R.J., Schaef, H.T., and Mattigod, S.V., J. Nuc. Mat. 298 (1–2), 95111 (2001).Google Scholar
6. Jégou, C., Gin, S., and Larché, F., J. Nuc. Mat. 280, 216229 (2000).Google Scholar
7. McGrail, B.P., Ebert, W.L., Bakel, A.J., and Peeler, D.K., J. Nuc. Mat. 249, 175189 (1997).Google Scholar
8. Wolery, T.J., EQ3NR, A Computer Program for Geochemical Aqueous Speciation-Solubility Calculations: Theoretical Manual, User's Guide, and Related Documentation (Version 7.0), UCRL-MA-110662 PT III, Lawrence Livermore National Laboratory, Livermore, California (1992).Google Scholar
9. McGrail, B.P., Icenhower, J.P., Bacon, D.H., Schaef, H.T., Martin, P.F., Rodriguez, E.A., and Steele, J.L., Low-Activity Waste Glass Studies: FY2001 Summary Report, PNNL-13761, Pacific Northwest National Laboratory, Richland, Washington (2001).Google Scholar
10. Vernaz, E., Gin, S., Jégou, C., and Ribet, I., J. Nuc. Mat. 298 (1–2), 2736 (2001).Google Scholar
11. Crank, J., in The Mathematics of Diffusion, (Clarendon Press, Oxford, United Kingdom, 1975), p. 414.Google Scholar
12. Haller, W., Blackburn, D.H., Wagstaff, F.E., and Charles, R.J., J. Am. Ceram. Soc. 53, 3438 (1970).Google Scholar
13. Polyakova, I.G., Glass Phys. Chem. 23 (1), 4557 (1997).Google Scholar
14. Jantzen, C.M. and Brown, K.G., in Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries, Ceramic Transactions 107, edited by Chandler, G.T., (American Ceramic Society, Westerville, Ohio, 2000), pp. 289300.Google Scholar
15. Tomozawa, M., J. Am. Ceram. Soc. 82 (11), 206208 (1999).Google Scholar
16. Dell, W.J., Bray, P.J., and Xiao, S.Z., J. Non-Cryst. Solids 58 (1), 116 (1983).Google Scholar
17. Yazawa, T., Kuraoka, K., Akai, T., Umesaki, N., and Du, W.-F., J. Phys. Chem. B 104 (9), 21092116 (2000).Google Scholar
18. Ramsey, W.G., Jantzen, C.M., and Taylor, T.D., in Environmental and Waste Management Issues in the Ceramic Industry, Ceramic Transactions 39, (American Ceramic Society, Westerville, Ohio, 1994), pp. 325332.Google Scholar
19. Aertsens, M., Ceram.-Silik. 43 (4), 175180 (1999).Google Scholar
20. McGrail, B.P., Icenhower, J.P., Shuh, D.K., Liu, P., Darab, J.G., Baer, D.R., Thevuthasen, S., Shutthanandana, V., Engelhard, M.H., Booth, C.H., and Nachimuthu, P., J. Non-Cryst. Solids 296 (1–2), 1026 (2001).Google Scholar
21. McGrail, B.P., Icenhower, J.P., Darab, J.G., Shuh, D.K., Baer, D.R., Shutthanandan, V., Thevusathan, S., Engelhard, M.H., Steele, J.L., Rodriguez, E.A., Liu, P., Ivanov, K.E., Booth, C.H., and Nachimuthu, P., Ion-Exchange Processes and Mechanisms in Glasses, PNNL-13717, Pacific Northwest National Laboratory, Richland, Washington (2001).Google Scholar