Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:07:52.981Z Has data issue: false hasContentIssue false

Origin of the Hydrogen/Deuterium (H/D) Isotope Effect of Hot-Electron Degradation of MOS Devices

Published online by Cambridge University Press:  17 March 2011

Zhi Chen
Affiliation:
Department of Electrical and Computer Engineering and Center for Micro-Magnetic and Electronic Devices, University of Kentucky, Lexington, KY 40506, U.S.A.
Jun Guo
Affiliation:
Department of Electrical and Computer Engineering and Center for Micro-Magnetic and Electronic Devices, University of Kentucky, Lexington, KY 40506, U.S.A.
Pangleen Ong
Affiliation:
Department of Electrical and Computer Engineering and Center for Micro-Magnetic and Electronic Devices, University of Kentucky, Lexington, KY 40506, U.S.A.
Get access

Abstract

In order to verify Van de Walle and Jackson's theory on the isotope effect of the Si-H/D bonds resistant to hot-electron excitation [Appl. Phys. Lett., 69, 2441 (1996)], we measured the Si-H, Si-D, and other vibrational modes in oxidized silicon wafers annealed in hydrogen and deuterium using Fourier Transform Infrared (FTIR) spectrometry. Our FTIR data suggest that the frequency for the Si-D bending mode at the SiO2/Si interface is 490 cm−1. Our experimental data support Van de Walle and Jackson's theory with some modification. Their theory is correct for the experiments of breaking Si-H/D bonds using scanning tunneling microscope (STM) where no oxide is involved. In the SiO2/Si case, the de-excitation of the Si-D bond may be due to the energy coupling from the Si-D bending mode to two vibrational modes; i.e., the Si-O TO mode and the Si-Si TO phonon mode. Van de Walle and Jackson only pointed out coupling to the Si-Si TO phonon mode. The strongest coupling might happen between the Si-D mode and the Si-O TO mode. Therefore, the oxide may play a crucial role in energy dissipation of the Si-D bond in metal-oxide-semiconductor (MOS) devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lyding, J. W., Proc. of IEEE 85, 589 (1997).Google Scholar
2. Avouris, P., Walkup, R. E., Rossi, A. R., Shen, T.-C., Abeln, G. C., Tucker, J. R., and Lyding, J. W., Chem. Phys. Lett., 257, 148 (1996).Google Scholar
3. Lyding, J. W., Hess, K., and Kizilyalli, I. C., Appl. Phys. Lett. 68, 2526 (1996).Google Scholar
4. Kizilyalli, I. C., Abeln, G., Chen, Z., Webber, G., Kozias, B., Chetlur, S., Lyding, J. W., and Hess, K., IEEE Electron. Dev. Lett. 19, 444 (1998).Google Scholar
5. Devine, R. A. B., Autran, J.-L., Warren, W. L., Vanheusdan, K. L., and Roastaing, J.-C., Appl. Phys. Lett. 70, 2999 (1997).Google Scholar
6. Chen, P. J. and Wallace, R. M., Appl. Phys. Lett. 73, 3441 (1998).Google Scholar
7. Chen, Z., Lee, J., Lyding, J. W., and Hess, K., Digest of Technical Papers of IEEE Symposium on VLSI Technology, 180 (1998).Google Scholar
8. Chen, Z., Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Aug. 1999.Google Scholar
9. Chen, Z., Hess, K., Lee, J., Lyding, J. W., Rosenbaum, E., Kizilyalli, I, Chetlur, S., and Huang, R., IEEE Electron Dev. Lett. 21, 24 (2000).Google Scholar
10. Walle, C. G. Van de and Jackson, W. B., Appl. Phys. Lett. 69, 2441 (1996).Google Scholar
11. Walle, C. G. Van de, IEEE Trans. Electron Dev. 47, 1779 (2000).Google Scholar
12. Wei, J.-H., Sun, M.-S., and Lee, S.-C., Appl. Phys. Lett. 71, 1498 (1997).Google Scholar
13. Data in Science and Technology: Semiconductors, edited by Madelung, O., Springer-Verlag, Berlin, 1991.Google Scholar
14. Lin, S.-Y., J. Appl. Phys. 82, 5976 (1997).Google Scholar
15. Lucovsky, G., Manitini, M. J., Srivastava, J. K., and Irene, E. A., J. Vac. Sci. Technol. B5, 530 (1987)Google Scholar
16. Gunde, M. K., Physica B 292, 286 (2000).Google Scholar
17. Brodsky, M. H., Cardona, M., and Cuomo, J. J., Phys. Rev. B 16, 3556 (1977).Google Scholar
18. Kim, K., J. Vac. Sci. Technol. A 16, 2272 (1998).Google Scholar