Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:42:22.726Z Has data issue: false hasContentIssue false

The Origin of Nanopipes and Micropipes in Non-Cubic GaN and SiC

Published online by Cambridge University Press:  10 February 2011

P. Pirouz*
Affiliation:
Department of Materials Science and Engineering, Case Western Reserve University, Cleveland,OH 44106-7204
Get access

Abstract

Micro/nanopipes are linear defects along the c-axis of hexagonal polytypes of SiC and GaN that are currently the focus of much attention. It has been shown that these defects can be very detrimental to the electronic properties of devices manufactured from, at least, 6H-SiC. In this paper, the origin of these defects is discussed in terms of Frank's theory [1] that dislocations will have a hollow core when their Burgers vector is large. Two fundamental issues about such dislocations are addressed: their formation along the c-axis of the crystal, and their stability despite their large Burgers vectors [2]. The proposed model is based on the mosaic structure of sublimation-grown 6H- or 4H-SiC, and VPE-grown 2H-GaN on sapphire substrates. The presence of unit c-axis screw dislocations is attributed to the accommodation of low-angle twist boundaries in the mosaic structure. The formation of superscrew dislocations with large Burgers vector, which empty their cores to reduce the excessive strain energy there, is shown to be the result of 3c screw dislocations in the axis of triple junctions which “getter” the neighboring unit dislocations and simultaneously increase their diameter. The predictions of the model are compared with available data in the literature, and suggestions are made for the decrease of nano/micropipe density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Frank, F. C., Acta Cryst. 4, 497501 (1951).Google Scholar
2. Pirouz, P., Phil. Mag. A (1998). In press.Google Scholar
3. Tairov, Y. M. and Tsvetkov, V. F., J. Crystal Growth 43, 209212 (1978).Google Scholar
4. Neudeck, P. G. and Powell, J. A., IEEE Electron Device Lett. 15, 6365 (1994).Google Scholar
5. Qian, W., Skowronski, M., Doverspike, K., Rowland, L. B. and Gaskill, D. K., J. Crystal Growth 151, 396400 (1995).Google Scholar
6. Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B. and Gaskill, D. K., Appl. Phys. Let. 67, 22842286 (1995).Google Scholar
7. Yang, J. W., SiC: Problems in Crystal Growth and Polytypic Transformation, Ph. D. Thesis, Case Western Reserve University, 1993.Google Scholar
8. Giocondi, J. et al., Mat. Res. Soc. Symp. Proc. 423, 539544 (1996).Google Scholar
9. Lilienthal-Weber, Z. et al., Phys. Rev. Lett. 79, 28352938 (1997).Google Scholar
10. Müller, S. G., Eckstein, R., Hartung, W., Hofmann, D., Kölb, M., Pensl, G., Schmitt, E., Schmitt, E. J., Weber, A. D. and Winnacker, A., Materials Science Forum 264–268, 3336 (1998).Google Scholar
11. Verma, A. R., Crystal Growth and Dislocations, (Butterworths, London, 1953).Google Scholar
12. Inomata, Y., Komatsu, H., Mitomo, M. and Inoue, Z., J. Crystal Growth 2, 322323 (1968).Google Scholar
13. Krishna, P., Jiang, S.-S. and Lang, A. R., J. Crystal Growth 71, 4156 (1985).Google Scholar
14. Barrett, D. L., McHugh, J. P., Hobgood, H. M., Hopkins, R. H., McMullin, P. G., Clarke, R. C. and Choyke, W. J., J. Cryst. Growth 128, 358362 (1993).Google Scholar
15. Hobgood, H. M., Barret, D. L., McHugh, J. P., Clarke, R. C., Sriram, S., Burk, A. A., Greggi, J., Brandt, C. D., Hopkins, R. H. and Choyke, W. J., J. Cryst. Growth 137, 181186 (1994).Google Scholar
16. Dudley, M., Wang, S., Huang, W., Carter, C. H. Jr., Tsvetkov, V. F. and Fazi, C., J. Phys. D - Applied Physics 28, A63–A68 (1995).Google Scholar
17. Frank, F. C., Disc. Faraday Soc. 5, 4854 (1949).Google Scholar
18. Lambrecht, W. R. L. et al., Phys. Rev. B 44, 36853694 (1991).Google Scholar
19. Kim, K., Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 53, 1631016326 (1996).Google Scholar
20. Kim, K., Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 56, 70187019 (1997).Google Scholar
21. Lambrecht, W. R. L. and Segall, B., Mat. Res. Soc. Symp. Proc. 242, 367372 (1992).Google Scholar
22. Lambrecht, W. R. L. and Segall, B., Phys. Rev. B 48, 17841 (1993).Google Scholar
23. Amelinckx, S., in Dislocations in Particular Solids, edited by Nabarro, F. R. N. (North-Holland Publishing Company 2, Chapter 6, Amsterdam, 1979), pp. 67460.Google Scholar
24. Pirouz, P., Materials Science Forum 264–268, 399408 (1998).Google Scholar
25. Read, W. T. Jr., Dislocations in Crystals, (McGraw-Hill, New York, 1953).Google Scholar
26. Glass, R. C., Kielberg, L. O., Tsvetkov, V. F., Sundgren, J. E. and Janzén, E., J. Crystal Growth 132, 504512 (1993).Google Scholar
27. Kapolnek, D. et al., Appl. Phys. Lett. 67, 15411543 (1995).Google Scholar
28. Heying, B. et al., Appl. Phys. Lett. 68, 643645 (1996).Google Scholar
29. Amano, H., Takeuchi, T., Sakai, H., Yamaguchi, S., Wetzel, C. and Akasaki, I., Materials Science Forum 264–268, 11151120 (1998).Google Scholar
30. Wu, X. H. et al., Jpn. J. Appl. Phys. 35, L1648–L1651 (1996).Google Scholar
31. Chien, F. R., Ning, X. J., Stemmer, S., Pirouz, P., Bremser, M. D. and Davis, R. F., Appl. Phys. Lett. 68, 26782680 (1996).Google Scholar
32. Qian, W. et al,, Appl. Phys. Let. 66, 12521254 (1995).Google Scholar
33. Ning, X. J., Chien, F. R., Pirouz, P., Yang, J. W. and Khan, M. Asif, J. Mater. Res. 11, 580592 (1996).Google Scholar
34. Wu, X. H., Brown, L. M., Kapolnek, D., Keller, B., Denbaars, S. P. and Speck, J. S., J. Appl. Phys. 80, 32283237 (1996).Google Scholar