Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T05:48:10.586Z Has data issue: false hasContentIssue false

Origin of Giant Seebeck Coefficient for High Density 2DEGs Confined in the SrTiO3/SrTi0.8Nb0.2O3 Superlattices

Published online by Cambridge University Press:  01 February 2011

Yoriko Mune
Affiliation:
[email protected], Nagoya University, Graduated school of engineering, Fro-cho, Chikusa, Nagoya, 464-8603, Japan
Hiromichi Ohta
Affiliation:
[email protected], Nagoya University, Graduated School of Engineering, Fro-cho, Chikusa, Nagoya, 464-8603, Japan
Teruyasu Mizoguchi
Affiliation:
[email protected], The University of Tokyo, Institute of Engineering Innovation, 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8656, Japan
Yuichi Ikuhara
Affiliation:
[email protected], The University of Tokyo, Institute of Engineering Innovation, 2-11-16 Yayoi, Bunkyo, Tokyo, 113-8656, Japan
Kunihito Koumoto
Affiliation:
[email protected], Nagoya University, Graduated School of Engineering, Fro-cho, Chikusa, Nagoya, 464-8603, Japan
Get access

Abstract

Recently, we have found that high-density two-dimensional electron gas (2DEG) confined within a unit cell layer thickness in SrTiO3 exhibits extremely large Seebeck coefficient (|S|2D) [REF], approximately five times larger than |S|3D. Here we clarify the origin of giant |S|2D using [(SrTiO3)x/(SrTi0.8Nb0.2O3)y]20 (x = 1∼60, y = 1∼20) superlattices. The |S|2D value increased proportionally to y{0.5, indicating that the density of states of the conduction band increases with decreasing y (quantum size effect). Superlattices of [(SrTiO3)x/(SrTi0.8Nb0.2O3)y]z (x = 0∼60, y = 1∼20, z = 20) were fabricated on the (001)-face of LaAlO3 substrate by PLD using RHEED to count the number of SrTiO3 or SrTi0.8Nb0.2O3 layers. HR-XRD and HAADF-STEM studies revealed that high-quality [(SrTiO3)17/(SrTi0.8Nb0.2O3)y]z superlattices were successfully fabricated. A dramatic increase of |S|2D is seen with decreasing y-value of the [(SrTiO3)x/(SrTi0.8Nb0.2O3)y]z superlattices. The slope for the plots of log |S|2D - log y is -0.5, and reached 290 μVK−1 (y = 1), which is ∼5 times larger than that of the SrTi0.8Nb0.2O3 bulk (|S|3D = 61 μVK−1). Further, the |S|2D value monotonically increases with x-value and is saturated when x-value > 16 (6.25 nm). We clarified that the critical barrier thickness for electron tunneling in [(SrTiO3)x/(SrTi0.8Nb0.2O3)y]z superlattice is 6.25 nm (16 unit cell layers of SrTiO3). The present results give very important information to utilize the [(SrTiO3)x/(SrTi0.8Nb0.2O3)y]z superlattices for practical application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terasaki, I. et al. , Phys. Rev. B 56, R12685 (1997).Google Scholar
2. Shikano, M. and Funahashi, R., Appl. Phys. Lett. 82, 1851 (2003).Google Scholar
3. Okuda, T. et al. , Phys. Rev. B 63, 113104 (2001).Google Scholar
4. Ohta, S., Nomura, T., Ohta, H. and Koumoto, K., J. Appl. Phys. 97, 034106 (2005).Google Scholar
5. Ohta, S., Nomura, T., Ohta, H., Hirano, M., Hosono, H. and Koumoto, K., Appl. Phys. Lett. 87, 092108 (2005).Google Scholar
6. Muta, H. et al. , Mater. Lett. 58, 3868 (2004).Google Scholar
7. Muta, H. et al. , J. Alloys Compd. 368, 22 (2004).Google Scholar
8. Yamamoto, Y., Ohta, H. and Koumoto, K., Appl. Phys. Lett. 90, 072101 (2007).Google Scholar
9. Kato, K., Yamamoto, M., Ohta, S., Muta, H., Kurosaki, K., Yamanaka, S., Iwasaki, H., Ohta, H. and Koumoto, K., J. Appl. Phys. (in press).Google Scholar
10. Hicks, L. D. and Dresselhaus, M. S., Phys. Rev.B 47, 12727 (1993).Google Scholar
11. Hicks, L. D., Harman, T. C., Sun, X. and Dresselhaus, M. S., Phys. Rev. B 53, R10493 (1996).Google Scholar
12. Ohta, H., Kim, S-W., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T, Nakanishi, Y., Hirano, M., Hosono, H. and Koumoto, K., Nature Mater. 6, 129 (2007).Google Scholar
13. Ohta, H., Mater. Today 10, 44 (2007).Google Scholar
14. Mune, Y., Ohta, H., Koumoto, K., Mizoguchi, T. and Ikuhara, Y., Appl. Phys. Lett. (in press).Google Scholar
15. Ohta, H., Mune, Y., Koumoto, K., Mizoguchi, T. and Ikuhara, Y., Thin Solid Films (in press).Google Scholar
16. Wood, J., Mater. Today 10, 15 (2007).Google Scholar
17. Ohnishi, T., Takahashi, K., Nakagawa, M., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 74, 2531 (1999).Google Scholar
18. Buban, J. P., Matsunaga, K., Chen, J., Shibata, N., Ching, W. Y., Yamamoto, T., Ikuhara, Y., Science 311, 212 (2006).Google Scholar
19. Ohtomo, A., Muller, D. A., Grazul, J. L., and Hwang, H. Y., Nature (London) 419, 378 (2002).Google Scholar
20. Koga, T., Cronin, S. B., Dresselhaus, M. S., Liu, J. L. and Wang, K. L., Appl. Phys. Lett. 77, 1490 (2000).Google Scholar
21. Frontiers in Materials Technologies, ed. by Meyers, M. A. and Inal, O. T., Elsevier (Amsterdam – Oxford – New York – Tokyo, 1985).Google Scholar