Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T10:56:56.838Z Has data issue: false hasContentIssue false

Organization of Nanowires into Complex 3D Assemblies by Template Electrodeposition

Published online by Cambridge University Press:  13 June 2012

Markus Rauber
Affiliation:
Department of Materials- and Geo-Sciences, Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany Materials Research Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
Wolfgang Ensinger
Affiliation:
Department of Materials- and Geo-Sciences, Technische Universität Darmstadt, Petersenstraße 23, 64287 Darmstadt, Germany
Get access

Abstract

To realize applications based on nanowires, the development of methods that allow the organization of nanostructures into integrated arrangements is crucial. While many different methods exist, the direct synthesis of complex nanowire structures is one of the most suitable approaches to efficiently connect numerous nanostructures to the macroscopic world. The fabrication of various 3D nanowire assemblies including arrays, networks, and hierarchical structures by combining specifically designed template materials with electrochemical deposition is demonstrated. The ion track template method is extended to create more complex structures by changing template production and electrodeposition parameters. In contrast to current synthesis routes, it is possible to independently control many of the parameters defining both (i) characteristics of individual nanowires (including dimensions and composition) and (ii) the arrangement of the nanoscale building blocks into nanowire assemblies determined by nanowire orientation and integration level. Results that highlight the benefits arising from the design of advanced 3D nanowire architectures are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. and Yan, H., Adv. Mater. 15, 353389 (2003).CrossRefGoogle Scholar
Koenigsmann, C. and Wong, S., Energ. Environ. Sci. 4, 11611176 (2011).CrossRefGoogle Scholar
Xu, S., Qin, Y., Xu, C., Wei, Y. G., Yang, R. S. and Wang, Z. L., Nat. Nanotech. 5, 366373 (2010).CrossRefGoogle Scholar
Wang, D. H., Luo, H. M., Kou, R., Gil, M. P., Xiao, S. G., Golub, V. O., Yang, Z. Z., Brinker, C. J. and Lu, Y. F., Angew. Chem. Int. Ed. 43, 61696173 (2004).CrossRefGoogle Scholar
Wanekaya, A. K., Chen, W., Myung, N. V. and Mulchandani, A., Electroanal. 18, 533550 (2006).CrossRefGoogle Scholar
Rauber, M., Brötz, J., Duan, J., Liu, J., Müller, S., Neumann, R., Picht, O., Toimil-Molares, M. E. and Ensinger, W., J. Phys. Chem. C 114, 2250222507 (2010).CrossRefGoogle Scholar
Karim, S., Toimil-Molares, M. E., Maurer, F., Miehe, G., Ensinger, W., Liu, J., Cornelius, T. W. and Neumann, R., Appl. Phys. A 84, 403407 (2006).CrossRefGoogle Scholar
Napolskii, K., Roslyakov, I., Eliseev, A., Petukhov, D., Lukashin, A., Chen, S., Liu, C. and Tsirlina, G., Electrochim. Acta 56, 23782384 (2011).CrossRefGoogle Scholar
Martin, C. R., Science 266, 19611966 (1994).CrossRefGoogle Scholar
Kline, T. R., Tian, M., Wang, J., Sen, A., Chan, M. W. H. and Mallouk, T. E., Inorg. Chem. 45, 75557565 (2006).CrossRefGoogle Scholar
Nielsch, K., Müller, F., Li, A. and Gösele, U., Adv. Mater. 12, 582586 (2000).3.0.CO;2-3>CrossRefGoogle Scholar
Popp, A. and Schneider, J. J., Angew. Chem. Int. Ed. 47, 89588960 (2008).CrossRefGoogle Scholar
Rauber, M., Alber, I., Müller, S., Neumann, R., Picht, O., Roth, C., Schökel, A., Toimil-Molares, M. and Ensinger, W., Nano Lett. 11(6), 23042310 (2011).CrossRefGoogle Scholar
Bierman, M. and Jin, S., Energ. Environ. Sci. 2, 10501059 (2009).CrossRefGoogle Scholar