Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T01:10:51.675Z Has data issue: false hasContentIssue false

Organic-Rich Hybrid O/I Systems Based on Isocyanate Chemistry

Published online by Cambridge University Press:  10 February 2011

S. Cuney
Affiliation:
UMR 5627, Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, INSA, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex, France, pascault [email protected] BSN, Le Clairin, BP 16, Saint-Romain, 69702 Givors, France
J. F. Gerard
Affiliation:
UMR 5627, Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, INSA, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex, France, pascault [email protected]
J. P. Pascault
Affiliation:
UMR 5627, Laboratoire des Matériaux Macromoléculaires, Bâtiment 403, INSA, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex, France, pascault [email protected]
G. Vigier
Affiliation:
UMR 5510, GEMPPM, Batiment 502, INSA, 20, Avenue A. Einstein, 69621 Villeurbanne Cedex, France
Get access

Abstract

The isocyanate chemistry has been used to prepare, without adding any solvent, organic-rich hybrid O/I systems. α–ω hydroxy-terminated prepolymers (soft segments, denoted SS) can be end-capped with γ-isocyanato propyl triethoxy silane (γ-IPS), or previously reacted with a diisocyanate (DI) and then end-capped with y-amino propyl triethoxy silane (γ-APS), or with γamino propyl methyl diethoxy silane (γ-APMDES). With this second pathway, a double distribution of molecules is present. The aim of this work is to investigate the morphologies and structural properties of different organic-rich hybrid organic/inorganic materials. Two types of α-ω hydroxy prepolymers have been used : hydrogenated polybutadiene, HPBD, and polycaprolactone, PCL.

The inorganic phase is obtained through the hydrolysis and condensation of the silane groups under acidic conditions and with [H2O]/Si = 3. Assuming a complete conversion of SiOH groups, the SiO2 content never exceed 10% wt. The extent of crosslinking is estimated by the soluble fraction able to be extracted by tetrahydrofurane. Times for gelation were obtained by rheological measurements and/or from the appearance of insoluble fractions. In-situ small angle X-ray scattering (SAXS) measurements show that phase separation between an organic-rich phase and an inorganic-rich one can appear before or after gelation depending on the acid catalyst concentration and the nature of SS.

The nanometric silica-rich particles in the final morphologies, after a post-cure at 150°C, were also studied by means of SAXS measurements. Viscoelastic measurements show one or two main relaxation peaks depending on the phase separation process during reaction and the polarity of the initial SS. However for full crosslinked SS/γ-IPS hybrid networks, the relaxed modulus does not depend on SS nature and it is well described by the affine network theory. Silica particles have a small size and probably a high functionality in elastically active network chains (EANC). The fully cured SS/DI/silane hybrid networks equilibrium moduli are higher than SS/γ-IPS one. This can be understood if some silane end-linked DI participate to the EANC.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mark, J.E. J.E., Lee, C. Y-C, and Bianconi, P.A., Hybrid Organic-Inorganic Composites and ref. therein, ACS 585, Am. Chem. Soc., Washington DC, 1995.Google Scholar
2. Sanchez, C. and Ribot, F., New J. Chem., p. 1007 (1994).Google Scholar
3. Serier, A., Pascault, J.P., and Lam, T.M., J. Polym. Sci. Chem. 29, p. 1125 (1991).Google Scholar
4. Schmidt, H. and Seiferling, B., Mater. Res. Soc. Symp. Proc. 73, p. 739 (1986).Google Scholar
5. Schmidt, H., J. of Sol-Gel Sci. and Tech. 1, p. 217 (1994).Google Scholar
6. Tamani, B., Betrabet, C., and Wilkes, G.L., Polym. Bull. 30, p. 393 (1993).Google Scholar
7. Ravaine, D., Seminel, A., Charbouillot, Y., and Vincens, M., J. Non-Cryst. Solids 82, p. 210 (1986).Google Scholar
8. Huang, H.H., Wilkes, G.L., and Carlson, J.G., Polymer 30, p. 2001 (1989).Google Scholar
9. Livage, J., Henry, M., and Sanchez, C., Prog. Solid State Chem. 18, p. 259 (1988).Google Scholar
10. Bailey, J.K., Macosko, C., and McCartney, M.L., J. Non-Cryst. Solids 125, p. 20 8 (1990).Google Scholar
11. Keefer, K.D., Adv. Chem. Ser. 224, p. 227 (1990).Google Scholar
12. Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, p. 301 (1985).Google Scholar
13. Keefer, K.D., Mater. Res. Soc. Proc. 32, p. 15 (1984).Google Scholar
14. Strawbridge, I., Craievich, A.F., and James, P.F., J. Non-Cryst. Solids 72, p. 139 (1985).Google Scholar
15. Yoldas, B.E., J. Non-Cryst. Solids 83, p. 375 (1986)Google Scholar
16. Artaki, I., Zerda, T.W., and Jonas, J., J. Non-Cryst. Solids 81, p. 381 (1986).Google Scholar
17. Colby, M.W., Osaka, A. and MacKenzie, J.D., J. Non-Cryst. Solids 99, p. 129 n(1988).Google Scholar
18. Flory, P.J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953.Google Scholar
19. Kaddami, H., Surivet, F., Gdrard, J.F., Lam, T.M., and Pascault, J.P., J. Inorg. and Organometal. Polym. 4 (2), p. 183 (1993).Google Scholar
20. Enns, J.B. and Gillham, J.K., J. Appl. Polym. Sci. 28, p. 2567 (1983).Google Scholar
21. Surivet, F., Lam, T.M., Pascault, J.P., and Pham, Q.T., Macromolecules 25, p. 4309 (1992).Google Scholar
22. Surivet, F., Lam, T.M., Pascault, J.P., and MaY, C., Macromolecules 25, p. 5742 (1992).Google Scholar
23. Beaucage, C. and Schaefer, D.W., J. Non-Cryst. Solids 173, p. 797 (1994).Google Scholar
24. Adoff, D., Martin, J.E., and Wilcoxon, J.P., Macromolecules 23, p. 527 (1990).Google Scholar
25. Adoff, D. and Martin, J.E., Macromolecules 23, p. 3700 (1990).Google Scholar
26. Glaser, R.H. and Wilkes, G.L., ACS Polym. Prepr., New Orleans 28 (2), p. 236 (1985).Google Scholar
27. Rodrigues, D.E., Brennan, A.B., Wang, B., and Wilkes, G.L., Chem. Mater. 4, p. 1437(1992).Google Scholar