Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-10-01T09:48:59.395Z Has data issue: false hasContentIssue false

Organic-Inorganic Hybrid Encapsulation for P3HT Field-Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Noriyuki Kawashima
Affiliation:
Fusion Domain Laboratory, Materials Laboratories, Sony Corporation, 5-21-15, Higashikojiya, Ohta-ku, Tokyo, Japan
Kazumasa Nomoto
Affiliation:
Fusion Domain Laboratory, Materials Laboratories, Sony Corporation, 5-21-15, Higashikojiya, Ohta-ku, Tokyo, Japan
Masaru Wada
Affiliation:
Fusion Domain Laboratory, Materials Laboratories, Sony Corporation, 5-21-15, Higashikojiya, Ohta-ku, Tokyo, Japan
Jiro Kasahara
Affiliation:
Fusion Domain Laboratory, Materials Laboratories, Sony Corporation, 5-21-15, Higashikojiya, Ohta-ku, Tokyo, Japan
Get access

Abstract

We investigated the effect of encapsulation on poly(3-hexylthiophe) (P3HT) bottom-gate field-effect transistors (BG-FETs) with a high on/off current ratio achieved by thermal annealing in N2 atmosphere. The intensity of the oxygen-related absorption peak in the Fourier-transform infrared (FT-IR) spectra of the P3HT films showed a correlation to the on/off current ratio of the FETs. In order to eliminate this oxygen-doping effect, we evaluated three types of encapsulation film: polymer insulator, SiNx, and polymer-SiNx hybrid insulator. We found that the polymer-SiNx hybrid insulator film can suppress both damage caused by the formation of the encapsulation layer and the doping caused by exposure to air. To investigate the effect of encapsulation, we calculated the time dependence of the unintentional dopant density of the P3HT film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E. P., Science 265, 1684 (1994).Google Scholar
2 Knobloch, A., Manuelli, A., Bernds, A., and Clemens, W., J. Appl. Phys. 4, 2286 (2004).Google Scholar
3 Hoshino, S., Yoshida, M., Uemura, S., Kodzasa, T., Takada, N., Kamata, T., and Yase, K., J. Appl. Phys. 95 5088 (2004).Google Scholar
4 Mattis, B. A., Chang, P. C., and Subramanian, V., (Mat.Res. Soc. Symp. Proc.) 771 L10.35 (2003).Google Scholar
5 Abdou, M., Orfino, F., Son, Yongkeun, and Holdcroft, S., J. Am. Chem. Soc. 119, 4518 (1997).Google Scholar
6 Heeney, M., Bailey, C., Genevicius, K., Shkunov, M., Sparrowe, D., Tierney, S., and McCullouch, I., J. Am. Chem. Soc. 127, 1078 (2005).Google Scholar
7 Ong, B. S., Yiliang Wu, Ping Liu, and Gardner, S., J. Am. Chem. Soc. 126, 3378 (2004).Google Scholar
8 Brown, A. R., Jarrett, C. P., Leew, D. M. de, Matters, M., Synth. Met. 88, 37 (1997).Google Scholar