Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:23:24.721Z Has data issue: false hasContentIssue false

Organically-functionalised supertetrahedra as building blocks for hybrid materials

Published online by Cambridge University Press:  01 February 2011

Paz Vaqueiro
Affiliation:
[email protected], Heriot-Watt University, Chemistry, Edinburgh, United Kingdom
M Lucia Romero
Affiliation:
[email protected], Heriot-Watt University, Chemistry, Edinburgh, United Kingdom
Get access

Abstract

The crystal structures of gallium sulfides prepared under solvothermal conditions, using 4-picoline as a solvent, are described. These materials contain [Ga10S16(NC6H7)4]2− clusters, in which the terminal S2− anions have been replaced by covalently bonded 4-picoline molecules. Whilst these phases contain isolated supertetrahedral clusters separated by organic moieties, linkage of such clusters via organic ligands is possible under suitable reaction conditions. These organically-functionalised supertetrahedra could therefore be used to design novel Metal-Organic frameworks (MOFs) in which the normally-encountered metal centers are replaced by supertetrahedral clusters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feng, P., Bu, X., Zheng, N., Acc. Chem. Res., 38, 293303 (2005).Google Scholar
2. Yaghi, O. M., Sun, Z., Richardson, D. A. and Groy, T. L., J. Am. Chem. Soc., 116, 807808 (1994).Google Scholar
3. Li, H., Laine, A., O'Keeffe, M. and Yaghi, O. M., Science, 283, 11451147 (1999).Google Scholar
4. Wang, C., Li, Y., Bu, X., Zheng, N., Zivkovic, O., Yang, C.-S. and Feng, P., J. Am. Chem. Soc., 123, 1150611507 (2001).Google Scholar
5. Zheng, N., Bu, X., Feng, P., J. Am. Chem. Soc., 125, 11381139 (2003).Google Scholar
6. Vaqueiro, P. and Romero, M. L., J. Phys. Chem. Solids, 68, 12391243 (2007).Google Scholar
7. Vaqueiro, P., Inorg. Chem., 45, 41504156 (2006).Google Scholar
8. Vaqueiro, P. and Romero, M. L., Chem. Commun., 32823284 (2007).Google Scholar
9. Hurd, C. D. and Simon, J. I., J. Am. Chem. Soc., 84, 45194524 (1962).Google Scholar
10. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M.C., Polidori, G. and Camelli, M., J. Appl. Crystallogr., Sect. A., 27 435 (1994).Google Scholar
11. Watkin, D.J., Prout, C.K., Carruthers, J.R., Betteridge, P.W., in CRYSTALS Issue 10, Chemical Crystallography Laboratory, University of Oxford, UK 1996.Google Scholar
12. Sluis, P. V. D., Spek, A. L., Acta Crystallogr., A46, 194201 (1990).Google Scholar
13. Vaqueiro, P. and Romero, M. L., J. Am. Chem. Soc., 130, 96309631 (2008).Google Scholar
14. Spek, A. L., J. Appl. Cryst., 36 713 (2003).Google Scholar
15. Schmidbaur, H. and Nogai, S. D., Z. Anorg. Allg. Chem., 630, 22182225 (2004).Google Scholar
16. Férey, G., Angew. Chem. Int. Ed., 42, 25762579 (2003).Google Scholar
17. Vaqueiro, P. and Romero, M. L., Inorg. Chem., submitted.Google Scholar
18. Choy, A., Craig, D., Dance, I. and Scudder, M., J. Chem. Soc., Chem. Commun., 12461247 (1982).Google Scholar
19. Zheng, N., Lu, H., Bu, X. and Feng, P., J. Am. Chem. Soc., 128, 45284529 (2006).Google Scholar
20. Zheng, N, Bu, X., Lauda, J. and Feng, P., Chem. Mater., 18, 43074311 (2006).Google Scholar