Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T12:13:38.013Z Has data issue: false hasContentIssue false

Organic Metals and Superconductors: Facile Synthetic Methodologies Bypassing Coupling and Chromatography

Published online by Cambridge University Press:  10 February 2011

Ronald L. Meline
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington, TX 76019([email protected])
Ronald L. Elsenbaumer
Affiliation:
Department of Chemistry and Biochemistry, The University of Texas at Arlington Arlington, TX 76019([email protected])
Get access

Abstract

The organic donor tetrathiafulvalene (TTF, 1) and its derivatives are synthesized from tetrathianaphthalene (TTN, 2) in a one pot reaction. The reaction takes advantage of an isomerization of lithiated TTN into lithiated TTF and subsequent substitution with novel disulfide electrophiles yielding substituted T donors. The isomerization approach eliminates the need for a chemical coupling reaction of oxones or thiones (a yield limiting procedure), and simple byproducts eliminate the need for tedious purification. The novel methodology allows for a high yield preparation of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF, 3a, 80%) and bis(propylenedithio)tetrathiafulvalene (BPDT-TTF, 3b), previously unavailable directly from TTF. A high yield of bis(phenylenedithio)tetrathiafulvalene (BPhDT-TTF, 3c, unavailable from dimercaptoisotrithione “DMIT”) is also achieved using the synthetic scheme. The method is general, and can be used to prepare a variety of novel organic donors based on TTF. Synthetic procedures along with all relevant characterization are presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Green, D.C., J. Org. Chem. 1979, 44, 1476.Google Scholar
2 Aharon-Shalom, E., Becker, J.Y., Bernstein, J., Bittner, S. and Shaik, S., Tetrahedron Lett. 1985, 2783.Google Scholar
3 Hsu, S. and Chiang, L.Y., J. Org. Chem. 1987, 52, 3444.Google Scholar
4 Okada, N., Yamochi, H., Shinozaki, F., Oshima, K. and Saito, G., Chem. Lett. 1986, 1861.Google Scholar
5 Yamochi, H., Iwasawa, N., Urayama, H. and Saito, G., Chem. Lett. 1987, 2265.Google Scholar
6 Bryce, M.R. (personal discussions)Google Scholar
7 Lee, V.Y., Synth. Met. 1987, 20, 161.Google Scholar
8 Kini, A.M., Gates, B.D., Beno, M.A. and Williams, J.M., J.C.S. Chem. Commun. 1989, 169.Google Scholar
9 Moore, A.J. and Bryce, M.R., Synthesis 1997, 4, 407.Google Scholar
10 Nakatsuji, S., Amano, Y., Kawamura, H. and Anzai, H., J.C.S. Chem. Commun. 1994, 841.Google Scholar
11 Meline, R.L. and Elsenbaumer, R.L., Synthetic Metals. 1997, 86, 1845.Google Scholar
12 Meline, R.L. and Elsenbaumer, R.L., Synthesis 1997, 6, 617.Google Scholar
13 Brois, S.J., Pilot, J.F. and Barnum, H.W., J. Am. Chem. Soc. 1970, 92, 7629.Google Scholar
14 Barany, G., Schroll, A.L., Mott, A.W. and Halsrud, D.A., J. Org. Chem. 1983, 48, 4750.Google Scholar
15 Shu, P., Chiang, L., Emge, T., Holt, D., Kistenmacher, T., Lee, M., Stokes, J., Poehler, T., Bloch, A. and Cowan, D., J.C.S. Chem. Commun. 1981, 920.Google Scholar
16 Chiang, L-Y., Shu, P., Holt, D. and Cowan, D., J. Org. Chem. 1983, 48, 4713.Google Scholar
17 Santalo, N., Veciana, J., Rovira, C, Molins, K., Miravitlles, C. and Claret, J., Synth. Met. 1991, 41–43, 2205.Google Scholar
18 Kumar, E.V.K. Suresh, Singh, J.D., Singh, H.B., Das, K. and Verghese, B., Tetrahedron 1997, 53, 1627.Google Scholar
19 Ketcham, R., Hörnfeldt, A-B. and Gronowitz, S., J. Org. Chem. 1984, 49, 1117.Google Scholar
20 Chen, W., Cava, M.P., Takassi, M.A., and Metzger, R.M., J. Am. Chem. Soc. 1988, 110, 7903.Google Scholar
21 Zong, K., Chen, W., Cava, M.P. and Rogers, R.D., J. Org. Chem. 1996, 61, 8117.Google Scholar
22 Siquot, Y., Frère, P., Nozdryn, T., Cousseau, J., Sallé, M., Jubault, M., Orduna, J Garín, J. and Gorgues, A., Tetrahedron Lett. 1997, 38, 1919.Google Scholar
23 Müller, H. and Ueba, Y., Synthesis 1993, 853.Google Scholar
24 Svenstrup, N., Rasmussen, K.M., Hansen, T.K. and Becher, J., Synthesis 1994, 809.Google Scholar
25 Krief, A., Tetrahedron. 1986, 42, 1209.Google Scholar
26 Williams, J.M., Ferraro, J.R., Thorn, R.J., Carlson, K.D., Geiser, U., Wang, H.H., Kini, A.M. and Whangbo, H., Organic Superconductors; Prentice Hall: New Jersey, 1992.Google Scholar
27 Mizuno, M., Garito, A.F. and Cava, M.P., J.C.S. Chem Commun. 1978, 18.Google Scholar
28 Muller, H., Fritz, H.P., Nemetshek, R, Hackl, R, Biberacher, W. and Heidmann, C.P., Z Naturforsch. 1992, 47b, 718.Google Scholar
29 Porter, L.C., Kini, A.M. and Williams, J.M., Acta Cryst. 1987, C43, 998.Google Scholar
30 Parakka, J.P., Kini, A.M. and Williams, J.M., Tetrahedron Lett. 1996, 8085.Google Scholar