Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:41:52.071Z Has data issue: false hasContentIssue false

Ordering and shape tuning of Ge islands on metal-patterned Si

Published online by Cambridge University Press:  01 February 2011

Jeremy T. Robinson
Affiliation:
[email protected], University of California, Materials Science and Engineering, 1 Cyclotron rd., M/S: 2-R200, Berkeley, CA, 94720, United States
Yifan Cao
Affiliation:
[email protected], University of California- Berkeley, Materials Science and Engineering, Berkeley, CA, 94720, United States
Donald Walko
Affiliation:
[email protected], Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, United States
Dohn Arms
Affiliation:
[email protected], Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, United States
J. Alexander Liddle
Affiliation:
[email protected], Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States
Oscar D. Dubon
Affiliation:
[email protected], University of California- Berkeley, Materials Science and Engineering, Berkeley, CA, 94720, United States
Get access

Abstract

In semiconductor epitaxy, a central challenge for the formation of ordered arrays of nanostructures, such as quantum dot islands, is the realization of processing routes to control surface-mediated growth mechanisms with high spatial precision and reproducibility across macroscopic lengths. To this end we have recently demonstrated a simple route for the directed assembly of heteroepitaxial islands based on rudimentary metal patterning. Here we show that the same metal patterns on the silicon surface that lead to island ordering radically modify island morphology resulting in shapes such as nanorods and truncated pyramids that are set by the choices of metal species and substrate orientation. These effects reflect a remarkable combination of metal-mediated growth phenomena that may be exploited to tailor the functionality of island arrays.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Copel, M., Reuter, M. C., Kaxiras, E., and Tromp, R. M., Phys. Rev. Lett. 63, 632 (1989).Google Scholar
[2] Wilk, G. D., Martinez, R. E., Chervinsky, J. F., Spaepen, F., and Goloychenko, J. A., Appl. Phys. Lett. 65, 866 (1994).Google Scholar
[3] Evans, P. G., Dubon, O. D., Chervinsky, J. F., Spaepen, F., and Goloychenko, J. A., Appl. Phys. Lett. 77, 2616 (1999).10.1063/1.1318930Google Scholar
[4] Kandel, D., and Kaxiras, E., Solid State Physics, ed. by Ehrenreich, H., and Spaepen, F., Vol. 54, 219262, Academic Press, San Diego (2000).Google Scholar
[5] Berbezier, I., Ronda, A., Portavoce, A. and Motta, N., Appl. Phys. Lett. 83 (23), 4833 (2003).Google Scholar
[6] Eaglesham, D. J., Unterwald, F. C. and Jacobson, D. C., Phys. Rev. Lett. 70 (7), 966 (1993).Google Scholar
[7] Medeiros-Ribeiro, G., Bratkovski, A.M., Kamins, T.I., Ohlberg, D.A.A, Williams, R.S., Science 279, 353 (1998).Google Scholar
[8] Ross, F. M., Tromp, R.M., Reuter, M.C., Science 286, 1931 (1999).10.1126/science.286.5446.1931Google Scholar
[9] For example: Kamins, T. I. et al., Appl. Phys. Lett. 71, 1201 (1997); S. Yu. Shiryaev et al., Phys. Rev. Lett 78, 503 (1997); E. S. Kim et al., Appl. Phys. Lett. 72, 1617 (1998); O. G. Schmidt et al., Appl. Phys. Lett. 77, 4139 (2000).Google Scholar
[10] Robinson, J. T., Liddle, J. A., Minor, A., Radmilovic, V., Yi, D. O., Greaney, P. Alex, Long, K. N., Chrzan, D. C., and Dubon, O. D., Nano Lett. 5, 2070 (2005).Google Scholar