Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:06:28.839Z Has data issue: false hasContentIssue false

Order-Disorder Transition Under Shearing : Application to Ball Milling

Published online by Cambridge University Press:  15 February 2011

P. Pochet
Affiliation:
CEA, Section de Recherches de Métallurgie Physique CE-Saclay F 91191 Gif sur Yvette Cedex, [email protected]
P. Bellon
Affiliation:
CEA, Section de Recherches de Métallurgie Physique CE-Saclay F 91191 Gif sur Yvette Cedex, [email protected]
L. Chaffron
Affiliation:
CEA, Section de Recherches de Métallurgie Physique CE-Saclay F 91191 Gif sur Yvette Cedex, [email protected]
G. Martin
Affiliation:
CEA, Section de Recherches de Métallurgie Physique CE-Saclay F 91191 Gif sur Yvette Cedex, [email protected]
Get access

Abstract

The evolution under sustained shear of an ordered crystal with B2 structure is studied by Monte-Carlo simulation: the effect of shearing is modelled by shifts of atomic planes, while thermally activated atomic diffusion is promoted by the motion of one vacancy. The tricritical point expected in the dynamical phase diagram from mean field theories and from Monte-Carlo simulations in the limit of weak driving (few atoms shifted at once) does not appear in such simulations, much in the same way as for "large cascade size" in alloys under irradiation. However an unexpected bifurcation in microstructures is observed which could be related to the order-disorder transition experimentally observed under ball-milling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Martin, G. and Bellon, P., in Statics and Dynamics of Alloy Phase Transformation, edited by Turchi, P.E.A. and Gonis, A., Plenum Press, New York, (1994), p. 605;Google Scholar
Martin, G., Bellon, P. and Soisson, F., in Phase Transformations in Materials edited by Johnson, W.C., Howe, J.M., Langhlin, D.E. and Soffa, W.A., TMS (1994), p. 937.Google Scholar
[2] Soisson, F., Dubuisson, P., Bellon, P. and Martin, G., in Phase Transformations in Materials edited by Johnson, W.C., Howe, J.M., Langhlin, D.E. and Soffa, W.A., TMS (1994), p. 981.Google Scholar
[3] Pochet, P., Tominez, E, Chaffron, L. and Martin, G., Phys. Rev. B 52, 4006 (1995).Google Scholar
[4] He, Y., Shiflet, G. J. and Poon, S.J., Acta. Metall. Mater. 43, 83 (1995).Google Scholar
[5] Fecht, H.J., in Nanophase Materials, edited by Hadjipanagis, G.C. and Siegel, R.W., Kluwer Academic Publishers (1994) p. 125.Google Scholar
[6] Bellon, P. and Averback, R.S., Phys. Rev. Lett. 74, 1819 (1995);Google Scholar
Bellon, P. and Averback, R.S., in Non-Linear Phenomena in Materials Science III, Eds. Ananthakrishna, , Kubin, L. and Martin, G., Solid State Phenomena vol. 42–43, TransTech, Aedermannsdorf (1995), p. 69.Google Scholar
[7] Bellon, P. and Martin, G., Phys. Rev. B 39, 2403 (1989).Google Scholar
[8] Salomons, E., Bellon, P., Soisson, F. and Martin, G., Phys. Rev. B 45, 4582 (1992).Google Scholar
[9] Ackermann, H., Inden, G., and Kikuchi, R., Acta. Metall. Mater. 37, 1 (1989).Google Scholar
[10] Soisson, F., Barbu, A. and Martin, G., Acta. Metall. Mater. (in the press 1996).Google Scholar
[11] Sharrott, D., Crimp, M.A., Mater. Sci. Eng. A 192/193, 83 (1995).Google Scholar
[12] Crimp, M.A. and Vedula, K., Phil. Mag. A 63, 559 (1991).Google Scholar
[13] Beauchanp, P., Dirras, G. and Veyssiere, P., Phil. Mag. A 65, 477 (1992).Google Scholar
[14] Chou, C. T. and Hirsch, P., Proc. R. Soc. Lond. A387, 91 (1983).Google Scholar
[15] Merking, H. and Estring, Y., Scripta Metall. Mater. 14, 815 (1980).Google Scholar
[16] Bellon, P. et al. this proceeding.Google Scholar