Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T08:49:51.730Z Has data issue: false hasContentIssue false

Order and Disorder in the Oxygen-Deficient Fluorite-Related Oxides*

Published online by Cambridge University Press:  21 February 2011

Leroy Eyring*
Affiliation:
Department of Chemistry and the Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, USA
Get access

Abstract

The fluorite-related oxides have many uses in applied materials science and they present an excellent subject for study in solid state science. They exhibit examples of nonstoichiometric phases of wide composition range and series of ordered intermediate phases. Some details of the ordering of oxygen vacancies in the nonstoichiometric fluorite-related phases of the rare earth oxides are presented, including imaging of the process at high resolution in the electron microscope. Other highresolution studies of the ordered intermediate phases have revealed the structural principles that relate members of the homologous series RnO2n−2 Other ordered structures not belonging to the series are also discussed and the whole related to the zirconia and hafnia systems stabilized by calcia and yttria.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Supported by the National Science Foundation Grant DMR81-80306.

References

REFERENCES

1. Rossell, H. J. in: Science and Technology of Zirconia, Hobbs, Heuer, eds (The American Ceramic Society, 1981) pp. 4763.Google Scholar
2. Bartram, S. F., Inorg. Chem., 5, 749754 (1966).Google Scholar
3. Thornber, M. R., Bevan, D. J. M. and Graham, J., Acta Crystallogr., 24, 11831190 (1968).Google Scholar
4. Rossell, H. J., J. Solid State Chem., 19, 103111 (1976).CrossRefGoogle Scholar
5. Scott, H. G., J. Mater. Sci., 10, 15271535 (1975);CrossRefGoogle Scholar
5a 12, 311–316 (1977).Google Scholar
6. Scott, H. G., Acta Crystallogr.Sect. B, 33, 281282(1977).Google Scholar
7. Yovanovitch, O. and Delamarre, C., Mat. Res. Bull., 1, 10051010 (1976).Google Scholar
8. Michel, D., Mater, Res. Bull., 8, 943949 (1973).Google Scholar
9. Allpress, J. G., Rossell, H. J. and Scott, H. G., J. Solid State Chem., 14, 264273 (1975).Google Scholar
10. Rossell, H. J. and Scott, H. G., J. Solid State Chem., 13, 345350 (1975).Google Scholar
11. Duclot, M., Vicat, J. and Deportes, G., J. Solid State Chem., 2, 236249 (1970).Google Scholar
12. Bevan, D. J. M. and Summerville, E. in: Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, Jr. and Eyring, , eds. (North- Holland, Amsterdam, 1979) pp. 401524.Google Scholar
13. Cohen, J. B., Faber, J. Jr. and Morinaga, M. in: Science and Technology of Zirconia, Hobbs, Heuer, eds. (The American Ceramic Society, 1981) pp. 3746.Google Scholar
14. Butler, V., Catlow, C. R. A. and Fender, B. E. F., Solid State Ionics, 5, 539542 (1981).Google Scholar
15. Eyring, L. in: Handbook on the Physics and Chemistry of Rare Earths, Gschneidner, Jr. and Eyring, , eds. (North-Holland, Amsterdam, 1979) pp. 337399.Google Scholar
16. Hyde, B. G., Bevan, D. J. M. and Eyring, L., Phil. Trans., 259, 583614 (1966).Google Scholar
17. Hyde, B. G. and Eyring, L. in: Rare Earth Research III, Eyring, ed. (Gordon and Breach, 1965) pp. 623664.Google Scholar
18. Bevan, D. J. M. and Kordis, J., Inorg, J.. Nucl. Chem., 26, 1509 (1964).Google Scholar
19. Von Dreele, R. B., Eyring, L., Bowman, A. L. and Bowman, J. L., Acta Crystallogr., B31, 971 (1975).CrossRefGoogle Scholar
20. Ray, S. P. and Cox, D. E., J. Solid State Chem., 15, 333343 (1975).Google Scholar
21. Kunzmann, P. and Eyring, L., J. Solid State Chem., 14, 229237 (1975).Google Scholar
22. Skarnulis, J., Summerville, E. and Eyring, L., J. Solid State Chem., 23, 5971 (1978).Google Scholar
23. Summerville, E., Tuenge, R. T. and Eyring, L., J. Solid State Chem., 24, 2131 (1978).CrossRefGoogle Scholar
24. Tuenge, R. T. and Eyring, L., J. Solid State Chem., 29, 165179 (1979).Google Scholar
25. Tuenge, R. T. and Eyring, L., J. Solid State Chem., 41, 7589 (1982).Google Scholar
26. Kang, Z. C., Rae Smith, A. and Eyring, L., to be published.Google Scholar
27. S∅rensen, O. T. in: Nonstoichiometric Oxides, Sorensen, , ed. (Academic Press, 1981) pp. 159.Google Scholar
28. Ray, S. P., Nowick, A. S. and Cox, D. E., J. Solid State Chem., 15, 344351 (1975).Google Scholar
29. Knappe, P. and Eyring, L., unpublished resultsGoogle Scholar
30. Rae Smith, A. and Eyring, L., Ultramicroscopy, 8, 6578 (1982).Google Scholar
31. Jenkins, M. S., Turcotte, R. P. and Eyring, L. in: The Chemistry of Extended Defects in Non-Metallic Solids (North-Holland, 1970) pp. 3653.Google Scholar
32. Eyring, L. and Tuenge, R. T., unpublished results.Google Scholar