Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:29:32.959Z Has data issue: false hasContentIssue false

Optoelectronic Simulation of the Klein Paradox based on Negative Refraction Phenomenon

Published online by Cambridge University Press:  15 March 2011

Durdu Ö. Güney
Affiliation:
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 Department of Electrical & Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla California 92093-0407
David A. Meyer
Affiliation:
Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112
Get access

Abstract

Having shown elsewhere [1] that the Klein paradox for the Klein-Gordon (KG) equation of spin-zero particle manifests exactly the same kind of wave propagation and negative refraction phenomena, which also exist in the scattering of TM (transverse-magnetic) –polarized electromagnetic (EM) wave incident on a left handed medium (LHM), we show in this paper that it is possible to simulate the Klein paradox, using this peculiar feature of LHMs. Real time control and processing of certain quantum systems, involving controlled pair production rate and distribution, among others, could be achieved by this optoelectronic simulator using appropriate transformations and approximations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Güney, D. Ö. and Meyer, D. A., to be submitted to Phys. Rev. Lett.Google Scholar
2. Veselago, V. G., Sov. Phys. Usp. 10, 509 (1968).Google Scholar
3. Smith, D R, Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).Google Scholar
4. Smith, D. R., Kroll, N., Phys. Rev. Lett. 85, 2933 (2000).Google Scholar
5. Shelby, R. A., Smith, D. R., Schultz, S., Science 292, 77 (2001).Google Scholar
6. Valanju, P. M., Walser, R. M., Valanju, A. P., Phys. Rev. Lett. 88, 187401 (2002).Google Scholar
7. Smith, D. R., Schurig, D., Pendry, J. B., App. Phys. Lett. 81, 2713 (2002).Google Scholar
8. Foteinopoulou, S., Economou, E. N., Soukoulis, C. M., Phys. Rev. Lett. 90, 107402 (2003).Google Scholar
9. Nitta, H., Kudo, T., Minowa, H., Am. J. Phys. 67, 966 (1999).Google Scholar