Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:45:30.898Z Has data issue: false hasContentIssue false

Optimization of Plasmonic Nano-Antennas

Published online by Cambridge University Press:  01 February 2011

Ibrahim Kursat Sendur
Affiliation:
[email protected], Sabanci University, Mechatronics, Orhanli - Tuzla, Istanbul, 34956, Turkey, +90-216-483-9527, +90-216-483-9550
Orkun Karabasoglu
Affiliation:
[email protected], Sabanci University, Istanbul, 34956, Turkey
Eray Abdurrahman Baran
Affiliation:
[email protected], Sabanci University, Istanbul, 34956, Turkey
Gullu Kiziltas
Affiliation:
[email protected], Sabanci University, Istanbul, 34956, Turkey
Get access

Abstract

Interaction of light with plasmonic nano-antennas is investigated. First, an extensive parametric study is performed on the material and geometrical effects on dipole and bow-tie nano-antennas. The transmission efficiency is studied for various parameters including length, thickness, width, and composition of the antenna as well as the wavelength of incident light. The modeling and simulation of these structures is done using 3-D finite element method based full-wave solutions of Maxwell's equations. Next, a modeling-based automated design optimization framework is developed to optimize nano-antennas. The electromagnetic model is integrated with optimization solvers such as gradient-based optimization tools and genetic algorithms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hartschuh, A., Sanchez, E. J., Xie, X. S., and Novotny, L., Phys. Rev. Lett., 90, 095503 (2003).Google Scholar
2. Sendur, K., Challener, W., and Peng, C., J. Appl. Phys., 96, 27432752 (2004).Google Scholar
3. Grober, R. D., Schoelkopf, R. J., and Prober, D. E., Appl. Phys. Lett., 70, 1354 (1997).Google Scholar
4. Novotny, L., Phys. Rev. Lett., 98, 266802 (2007).Google Scholar
5. Sendur, K. and Challener, W. A., J. Microsc., 210, 279283 (2003).Google Scholar
6. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988).Google Scholar
7. Burke, J. J., Stegeman, G. I., and Tamir, T., Phys. Rev. B, 33, 5186 (1986).Google Scholar
8. Raether, H., Physics of thin films, vol. 9, pp. 145261 (Academic, New York, NY, 1977).Google Scholar
9. Muhlschlegel, P., Eisler, H.-J., Martin, O. J. F., Hecht, B., and Pohl, D. W., Science, 308, 16071609 (2005).Google Scholar
10. Jackel, F., Kinkhabwala, A. A., and Moerner, W. E., Chem. Phys. Lett., 446, 339343 (2003).Google Scholar
11. Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C., J. Phys. Chem. B, 107, 668677 (2003).Google Scholar
12. Palik, E. D., Handbook of optical constants of solids (Academic Press, San Diego, CA, 1998).Google Scholar
13. Richards, B. and Wolf, E., Proc. Roy. Soc. London Ser. A, 253, 358379, (1959).Google Scholar