Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:31:22.107Z Has data issue: false hasContentIssue false

Optical Transmission through Optically Thin and Thick Sub-wavelength Hole Arrays

Published online by Cambridge University Press:  31 January 2011

Serap Aksu
Affiliation:
[email protected], Boston University, Materials Science and Engineering, Boston, Massachusetts, United States
Hatice Altug
Affiliation:
[email protected], Boston University, Materials Science and Engineering, Boston, Massachusetts, United States
Get access

Abstract

In this work we have studied transmission and scattering of light through hexagonally packed circular subwavelength holes in optically thin and thick metallic film. The gold nanohole arrays are fabricated on glass substrate by combining nanosphere lithography with dry-etching technique. We observed that the transmission resonances of the thin films are significantly different than that of the thick films due to the coupling of plasmons at metal/air and metal/glass interfaces. We also investigated the effect of the diameter and the periodicity on the transmission resonance by controlling the dry-etching time and the bead size used in lithography, respectively. Finally, we have looked at the spectral response of the fabricated structures in media with different refractive indexes for bio-sensing application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A. Nature 1998, 391, 667669.Google Scholar
2 Lezec, H. J.; Thio, T. Opt. Express 2004, 12, 3629.Google Scholar
3 Gao, H.; Henzie, J.; Odom, T. W. Nano Lett. 2006, 6, 2104.Google Scholar
4 Martčn-Moreno, L.; Garcča-Vidal, F. J.; Lezec, H. J.; Pellerin, K.M.; Thio, T.; Pendry, J. B.; Ebbesen, T. W. Phys. ReV. Lett. 2001, 86, 1114.Google Scholar
5 Genet, C.; Ebbesen, T. W. Nature 2007, 445, 39 Google Scholar
6 Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature 2003, 424, 824830.Google Scholar
7 Brolo, A. G.; Gordon, R.; Leathem, B.; Kavanagh, K. L. Langmuir, 2004, 20, 48134815.Google Scholar
8 Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G. Acc. Chem. Res. 2008, 41, 10491057.Google Scholar
9 Deckman, H. W.; Dunsmuir, J. H. Appl. Phys. Lett. 1982, 41, 377379.Google Scholar
10 Hanarp, P.; Sutherland, D. S.; Gold, J.; Kasemo, B. J. Colloid Interface Sci. 2001, 241, 2631.Google Scholar
11 Haynes, C. L.; Van Duyne, R. P. J. Phys. Chem. B 2001, 105, 55995611.Google Scholar
12 Quint, S.B.; Pacholski, C. J. Mater. Chem. 2009, 19, 5906–59.Google Scholar
13 Kim, D. S.; Hohng, S. C.; Malyarchuk, V.; Yoon, Y. C.; Ahn, Y. H.; Yee, K. J.; Park, J. W.; Kim, J.; Park, Q. H. and Lienau, C. Phys. Rev. Lett., 2003, 91.Google Scholar
14 Genet, C., Ebbesen, T.W., Nature 445, 2007, 36 Google Scholar
15 Ctistis, G.; Patoka, P.; Wang, X.; Kempa, K.; Giersig, M.; Nano Letters 2007, Vol.7, 2926 Google Scholar
16 Murray, W. A.; Astilean, S.; Barnes, W. L.; Physical Review B 2004, 69, 165407.Google Scholar
17 Dahlin, A.B.; Tegenfeldt, J.O. and Hook, F. Anal. Chem 2006, 78, 44164423.Google Scholar