No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Non-linear optical second harmonic generation (SHG) from bulk silicon is very weak because of the inversion symmetry of the silicon lattice structure. However, when silicon material is subjected to the ion implantation and thermal annealing processes, the inversion symmetry will be broken. As a result, the optical second harmonic generation from the material will increase, and the characteristics of the second harmonic signal are related to the material conditions. In this study, we compare SHG results with Transmission Electron Microscope (TEM) observations for silicon material that has been treated with phosphorous ion implantation and rapid thermal annealing, and suggest that the SHG method may be used for the detection and monitoring of impurities and defects during ion implantation and thermal annealing processes.