Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:48:49.767Z Has data issue: false hasContentIssue false

Optical Quenching of Photoconductivity in GaN Photo-conductors

Published online by Cambridge University Press:  10 February 2011

Z.C. Huang
Affiliation:
NASA Goddard Space Flight Center, Solid State Device Development Branch, Code 718, Greenbelt, MD 20771
D.B. Mott
Affiliation:
NASA Goddard Space Flight Center, Solid State Device Development Branch, Code 718, Greenbelt, MD 20771
P.K. Shu
Affiliation:
NASA Goddard Space Flight Center, Solid State Device Development Branch, Code 718, Greenbelt, MD 20771
R. Zhang
Affiliation:
Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21228
J.C. Chen
Affiliation:
Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21228
D.K. Wickenden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723
Get access

Abstract

We report the first observation of optical quenching of photoconductivity in GaN photoconductors at room temperature. Three prominent quenching bands were found at Ev+1.44, 1.58 and 2.20 eV, respectively. These levels are related to the three hole traps in GaN materials based on a hole trap model to interpret the quenching mechanism. The responsivity was reduced about 12% with an additional He-Ne laser shining on the detector.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Johnson, C., Lin, J. Y., Jiang, H. X., Khan, M. A. and Sun, C. J., Appl. Phys. Lett., 68 1808 (1996)Google Scholar
2. Huang, Z. C., Goldberg, R., Chen, J. C., Zheng, Y. D., Mott, D. B. and Shu, P., Appl. Phys. Lett., 67, 2528 (1995)Google Scholar
3. Gotz, W., Johnson, N. M., Amano, H., and Akasaki, I., Appl. Phys. Lett., 65, 463 (1994)Google Scholar
4. Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., J. Appl. Phys., 76, 305 (1994)Google Scholar
5. Huang, Z.C., Chen, J. C., Mott, D. B., Proc. of 1st. Symposium on Nitrides and Related Devices, Boston (1995)Google Scholar
6. Balagurov, L. and Chong, P. J., Appl. Phys. Lett., 68, 43 (1996)Google Scholar
7. Gotz, W., Johnson, N. M., Amano, H., and Akasaki, I., Appl. Phys. Lett., 66, 1340 (1995)Google Scholar
8. Bube, R. H., Phys. Rev., 99, 1105 (1955)Google Scholar
9. Bube, R. H. and Lind, E. L., Phys. Rev., 110, 1040 (1958)Google Scholar
10. Newman, R. and Tyler, W. W., Phys. Rev., 96, 882 (1954)Google Scholar
11. Wickenden, D. K., Bargeron, C. B., Bryden, W. A., Miragliotta, J. A., and Kistenmacher, T. J., Appl. Phys. Lett., 65, 2024 (1994)Google Scholar
12. Bube, R. H., Photoconductivity of Solids, (John Wiley & Sons, New York), p. 173, 1960 Google Scholar
13. Rose, A., Concepts in Photoconductivity and Allied Problems, (John Wiley & Sons, New York), p. 52, 1963 Google Scholar
14. Glaser, E. R., Kennedy, T. A., Doverspike, K., Rowland, L. B., Gaskill, D. K., Freitas, J. A. Jr., Asif Khan, M., Olson, D. T., Kuznia, J. N., and Wickenden, D. K., Phys. Rev. B 51, 13326 (1995)Google Scholar
15. Ogino, T. and Aoki, M., Jpn. J. Appl. Phys., 19, 2395 (1980)Google Scholar
16. Suski, T., Perlin, P., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Bockowski, M., Porowski, S., and Moustakas, T. D., Appl. Phys. Lett., 67, 2188 (1995)Google Scholar